A Systematic Review of Effects on ACL Injury of Soccer Shoe Outsoles, Soccer Playing Field Surfaces, and Outsole–Surface Interface
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Data Extraction
2.3. Data Items
2.4. Study Identification and Selection
3. Results
3.1. Injuries in Soccer
3.2. Anatomical Mechanism of ACL Injuries
3.3. Kinematics of ACL Injuries
3.4. Strain Forces on the ACL
4. Soccer Shoes and ACL Injuries
4.1. Types of Outsoles
4.2. Mechanical Arrangement of the Outsole and Effect on the ACL
4.3. Importance of Shear Forces
5. Soccer Playing Surfaces
5.1. Artificial Turf and ACL Injuries
5.2. Environmental Effect on the Mechanical Properties of Turfs
5.3. Playing Surface Aging and Injuries
6. Outsole–Surface Interface
Rotational Friction/Traction and ACL Injuries
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hammer, E.; Brooks, M.A.; Hetzel, S.; Arakkal, A.; Comstock, R.D. Epidemiology of Injuries Sustained in Boys’ High School Contact and Collision Sports, 2008-2009 Through 2012–2013. Orthop. J. Sports Med. 2020, 8, 2325967120903699. [Google Scholar] [CrossRef]
- Marar, M.; McIlvain, N.M.; Fields, S.K.; Comstock, R.D. Epidemiology of Concussions Among United States High School Athletes in 20 Sports. Am. J. Sports Med. 2012, 40, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Our Research. UEFA Elite Club Injury Study 2019/20 Season Report Team X. UEFA. 2024. Available online: https://editorial.uefa.com/resources/0265-115cf1249d3a-c523ddeccfef-1000/uefa_elite_club_injury_study_season_report_2019-20_-_team_x_2_20210118151053.pdf (accessed on 17 May 2024).
- Ekstrand, J.; Krutsch, W.; Spreco, A.; van Zoest, W.; Roberts, C.; Meyer, T.; Bengtsson, H. Time before return to play for the most common injuries in professional football: A 16-year follow-up of the UEFA Elite Club Injury Study. Br. J. Sports Med. 2020, 54, 421–426. [Google Scholar] [CrossRef]
- Della Villa, F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; Della Villa, S. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br. J. Sports Med. 2020, 54, 1423–1432. [Google Scholar] [CrossRef]
- Yu, B.; Garrett, W.E. Mechanisms of non-contact ACL injuries. Br. J. Sports Med. 2007, 41 (Suppl 1), i47–i51. [Google Scholar] [CrossRef] [PubMed]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 705–729. [Google Scholar] [CrossRef]
- Giza, E.; Micheli, L.J. Soccer injuries. In Epidemiology of Pediatric Sports Injuries: Team Sports; Maffulli, N., Caine, D.J., Eds.; S.Karger AG: Basel, Switzerland, 2005; pp. 140–169. [Google Scholar]
- Patrick, R.B.; Nicholas, L. Etiology, Pathophysiology, and Most Common Injuries of the Lower Extremity in the Athlete. Clin. Podiatr. Med. Sur. 2011, 28, 1–18. [Google Scholar]
- Le Gall, F.; Carling, C.; Reilly, T. Injuries in young elite female soccer players: An 8-season prospective study. Am. J. Sports Med. 2008, 36, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, P.; Vanhoenacker, F.M.; Gielen, J.L.; Dossche, L. Three tesla magnetic resonance imaging of the anterior cruciate ligament of the knee: Can we differentiate complete from partial tears? Skeletal Radiol. 2011, 40, 701–707. [Google Scholar] [CrossRef]
- Agel, J.; Beskin, J.L.; Brage, M.; Guyton, G.P.; Kadel, N.J.; Saltzman, C.L.; Sands, A.K.; Sangeorzan, B.J.; SooHoo, N.F.; Stroud, C.C.; et al. Reliability of the Foot Function Index: A Report of the AOFAS Outcomes Committee. Foot Ankle Int. 2005, 26, 962–967. [Google Scholar] [CrossRef]
- Shea, K.G.; Pfeiffer, R.; Wang, J.H.; Curtin, M.; Apel, P.J. Anterior cruciate ligament injury in pediatric and adolescent soccer players: An analysis of insurance data. J. Pediatr. Orthop. 2004, 24, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.; Hong, Y. Soccer injury in the lower extremities. Br. J. Sports Med. 2005, 39, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Giza, E.; Mithöfer, K.; Farrell, L.; Zarins, B.; Gill, T. Injuries in women's professional soccer. Br. J. Sports Med. 2005, 39, 212–216. [Google Scholar] [CrossRef]
- Avinash, C.; Sarah, N.M.; Adrian, J.B.; Hannah, J.R.; Christy, L.C. Epidemiology of Injuries in National Collegiate Athletic Association Women’s Soccer: 2014–2015 through 2018–2019. J. Athl. Train. 2021, 56, 651–658. [Google Scholar]
- Gaulrapp, H.; Becker, A.; Walther, M.; Hess, H. Injuries in women’s soccer: A 1-year all players prospective field study of the women's Bundesliga (German premier league). Clin. J. Sport Med. 2010, 20, 264–271, Erratum in Clin. J. Sport Med. 2010, 20, 397. [Google Scholar] [PubMed]
- Dewig, D.R.; Boltz, A.J.; Moffit, R.E.; Rao, N.L.; Collins, C.L.; Chandran, A. Epidemiology of Anterior Cruciate Ligament Tears in National Collegiate Athletic Association Athletes: 2014/2015–2018/2019. Med. Sci. Sport Exer. 2024, 56, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gómez, J.; Adsuar, J.C.; Alcaraz, P.E.; Carlos-Vivas, J. Physical exercises for preventing injuries among adult male football players: A systematic review. J. Sport Health Sci. 2022, 11, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Neto, M.G.; Conceição, C.S.; Brasileiro, A.J.A.D.; de Sousa, C.S.; Carvalho, V.O.; de Jesus, F.L.A. Effects of the FIFA 11 training program on injury prevention and performance in football players: A systematic review and meta-analysis. Clin. Rehabil. 2017, 31, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Crossley, K.M.; Patterson, B.E.; Culvenor, A.G.; Bruder, A.M.; Mosler, A.B.; Mentiplay, B.F. Making football safer for women: A systematic review and meta-analysis of injury prevention programmes in 11 773 female football (soccer) players. Br. J. Sports Med. 2020, 54, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Boden, B.P.; Dean, G.S.; Feagin, J.A.; Garrett, W.E. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef]
- Wetters, N.; Weber, A.E.; Wuerz, T.H.; Schub, D.L.; Mandelbaum, B.R. Mechanism of injury and risk factors for anterior cruciate ligament injury. Oper. Techn. Sports Med. 2016, 24, 2–6. [Google Scholar]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee. Surg. Sports Traumatol. Arthrosc. 2009, 8, 859–879. [Google Scholar] [CrossRef] [PubMed]
- Sutton, K.M.; Bullock, J.M. Anterior Cruciate Ligament Rupture: Differences Between Males and Females. J. Am. Acad. Orthop. Sur. 2013, 21, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, S.; Grassi, A.; Tosarelli, F.; Crepaldi, M.; Bragonzoni, L.; Zaffagnini, S.; Della Villa, F. Two-Dimensional and Three-Dimensional Biomechanical Factors During 90° Change of Direction are Associated to Non-Contact ACL injury in Female Soccer Players. Int. J. Sports Phys. Ther. 2023, 18, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes A Prospective Study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.; Hooper, J.; Strauss, E. Anterior Cruciate Ligament Injuries in Females: Risk Factors, Prevention, and Outcome. Bull. Hosp. Jt. Dis. 2016, 74, 46–51. [Google Scholar]
- Rekik, R.N.; Bahr, R.; Cruz, F.; Read, P.; Whiteley, R.; D'hooghe, P.; Tabben, M.; Chamari, K. Mechanisms of ACL injuries in men's football: A systematic video analysis over six seasons in the Qatari professional league. Biol. Sport. 2023, 40, 575–586. [Google Scholar] [CrossRef]
- Lucarno, S.; Zago, M.; Buckthorpe, M.; Grassi, A.; Tosarelli, F.; Smith, R.; Della Villa, F. Systematic Video Analysis of Anterior Cruciate Ligament Injuries in Professional Female Soccer Players. Am. J. Sports Med. 2021, 49, 1794–1802. [Google Scholar] [CrossRef]
- Berns, G.S.; Hull, M.L.; Paterson, H.A. Strain in the anteriormedial bundle of the anterior cruciate ligament under combined loading. J. Orthop. Res. 1992, 10, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef]
- Laws of the Game. Laws of the Game 2023/24. IFAB. 2024. Available online: https://downloads.theifab.com/downloads/laws-of-the-game-2023-24?l=en (accessed on 17 May 2024).
- Thomas, G.; Veit, S. Traction behavior of soccer shoe stud designs under different game-relevant loading conditions. Procedia Eng. 2010, 2, 2783–2788. [Google Scholar]
- Clemens, M.; Thorsten, S.; Justin, L.; Thomas, L.M. Comprehensive evaluation of player-surface interaction on artificial soccer turf. Sports Biomech. 2010, 9, 193–205. [Google Scholar]
- Villwock, M.R.; Meyer, E.G.; Powell, J.W.; Fouty, A.J.; Haut, R.C. Football playing surface and shoe design affect rotational traction. Am. J. Sports Med. 2009, 37, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Livesay, G.A.; Reda, D.R.; Nauman, E.A. Peak Torque and Rotational Stiffness Developed at the Shoe-Surface Interface: The Effect of Shoe Type and Playing Surface. Am. J. Sports Med. 2006, 34, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.; Whiteley, R.; Wilson, M.; Bleakley, C. Six different football shoes, one playing surface and the weather; Assessing variation in shoe-surface traction over one season of elite football. PLoS ONE 2019, 14, e0216364. [Google Scholar]
- Williams, S.; Hume, P.A.; Kara, S. A Review of Soccer Injuries on Third and Fourth Generation Artificial Turfs Compared with Natural Turf. Sports Med. 2011, 41, 903–923. [Google Scholar] [CrossRef] [PubMed]
- Shimokochi, Y.; Shultz, S.J. Mechanisms of noncontact anterior cruciate ligament injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Scranton, P.E.; Whitesel, J.P.; Powell, J.W.; Dormer, S.G.; Heidt, R.S., Jr.; Losse, G.; Cawley, P.W. A Review of Selected Noncontact Anterior Cruciate Ligament Injuries in the National Football League. Foot Ankle Int. 1997, 18, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, J.A.; Rosenthal, P.P.; Gleim, G.W. A Historical Perspective of Injuries in Professional Football: Twenty-six Years of Game-Related Events. JAMA 1988, 260, 939–944. [Google Scholar] [CrossRef]
- Merritt, S.; Gross, H. Women’s Page/Lifestyle Editors: Does Sex Make a Difference? J. Mass Commun. Q. 1978, 55, 508–514. [Google Scholar] [CrossRef]
- Nigg, B.M.; Segesser, B. The Influence of Playing Surfaces on the Load on the Locomotor System and on Football and Tennis Injuries. Sports Med. 1988, 5, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Skovron, M.L.; Levy, I.M.; Agel, J. Living with artificial grass: A knowledge update: Part 2: Epidemiology. Am. J. Sports Med. 1990, 18, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Reider, B.; Sathy, M.R.; Talkington, J.; Blyznak, N.; Kollias, S. Treatment of Isolated Medial Collateral Ligament Injuries in Athletes with Early Functional Rehabilitation: A Five-year Follow-up Study. Am. J. Sports Med. 1994, 22, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.W.; Schootman, M. A multivariate risk analysis of selected playing surfaces in the National Football League: 1980 to 1989: An epidemiologic study of knee injuries. Am. J. Sports Med. 1992, 20, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, E.M.; Bignardi, C.; Franceschini, G.; Audenino, A.L. Amateur football pitches: Mechanical properties of the natural ground and of different artificial turf infills and their biomechanical implications. J. Sports Sci. 2013, 31, 767–778. [Google Scholar] [CrossRef]
- Lambson, R.B.; Barnhill, B.S.; Higgins, R.W. Football Cleat Design and Its Effect on Anterior Cruciate Ligament Injuries: A Three-Year Prospective Study. Am. J. Sports Med. 1996, 24, 155–159. [Google Scholar] [CrossRef]
- Orchard, J.; Steet, E.; Walker, C.; Ibrahim, A.; Rigney, L.; Houang, M. Hamstring Muscle Strain Injury Caused by Isokinetic Testing. Clin. J. Sport Med. 2001, 11, 274–276. [Google Scholar] [CrossRef]
- Torg, J.S.; Naranja, R.J.JR.; Pavlov, H.; Galinat, B.J.; Warren, R.; Stine, R.A. The Relationship of Developmental Narrowing of the Cervical Spinal Canal to Reversible and Irreversible Injury of the Cervical Spinal Cord in Football Players. An Epidemiological Study. J. Bone Joint Surg. Am. 1996, 78, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- A Guide to Synthetic and Natural Turfgrass for Sports Fields: Selection, Construction and Maintenance Considerations. Available online: https://www.sportsfieldmanagement.org/knowledge_center/a-guide-to-synthetic-and-natural-turfgrass-for-sports-fields-selection-construction-and-maintenance-considerations/ (accessed on 17 May 2024).
- Ekstrand, J.; Nigg, B.M. Surface-Related Injuries in Soccer. Sports Med. 1989, 8, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Reinschmidt, C.; Nigg, B.M. Current issues in the design of running and court shoes. Sportverletz Sportsc. 2000, 14, 71–81. [Google Scholar] [CrossRef]
- Milburn, P.D.; Barry, E.B. Shoe-Surface Interaction and the Reduction of Injury in Rugby Union. Sports Med. 1998, 25, 319–327. [Google Scholar] [CrossRef]
- Bell, M.; Holmes, G. The playing quality of association football pitches. J. Sports Turf Res. Inst. 1988, 61, 19–47. [Google Scholar]
- McClements, I.; Baker, S. The playing quality of rugby pitches. J. Sports Turf Res. Inst. 1994, 70, 29–43. [Google Scholar]
- Baker, S. Temporal variation of selected mechanical properties of natural turf football pitches. J. Sports Turf Res. Inst. 1991, 67, 53–65. [Google Scholar]
- Sánchez-Sánchez, J.; García-Unanue, J.; Gallardo, A.M.; Gallardo, L.; Hexaire, P.; Felipe, J.L. Effect of structural components, mechanical wear and environmental conditions on the player-surface interaction on artificial turf football pitches. Mater. Design 2018, 140, 172–178. [Google Scholar] [CrossRef]
- Charalambous, L.; von Lieres und Wilkau, H.C.; Potthast, W.; Irwin, G. The effects of artificial surface temperature on mechanical properties and player kinematics during landing and acceleration. J. Sport Health Sci. 2016, 5, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Dowling, A.V.; Corazza, S.; Chaudhari, A.M.; Andriacchi, T.P. Shoe-surface friction influences movement strategies during a sidestep cutting task: Implications for anterior cruciate ligament injury risk. Am. J. Sports Med. 2010, 38, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Wannop, J.W.; Stefanyshyn, D.J. The effect of translational and rotational traction on lower extremity joint loading. J. Sports Sci. 2016, 34, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Drakos, M.C.; Hillstrom, H.; Voos, J.E.; Miller, A.N.; Kraszewski, A.P.; Wickiewicz, T.L.; Warren, R.F.; Allen, A.A.; O’Brien, S.J. The Effect of the Shoe-Surface Interface in the Development of Anterior Cruciate Ligament Strain. J. Biomech. Eng. 2009, 132, 011003. [Google Scholar] [CrossRef]
- Forrester, S.; Fleming, P. Traction forces generated during studded boot-surface interactions on third-generation artificial turf: A novel mechanistic perspective. Eng. Rep. 2019, 1, e12066. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicchella, A.; He, J. A Systematic Review of Effects on ACL Injury of Soccer Shoe Outsoles, Soccer Playing Field Surfaces, and Outsole–Surface Interface. Encyclopedia 2024, 4, 888-899. https://doi.org/10.3390/encyclopedia4020057
Cicchella A, He J. A Systematic Review of Effects on ACL Injury of Soccer Shoe Outsoles, Soccer Playing Field Surfaces, and Outsole–Surface Interface. Encyclopedia. 2024; 4(2):888-899. https://doi.org/10.3390/encyclopedia4020057
Chicago/Turabian StyleCicchella, Antonio, and Jierui He. 2024. "A Systematic Review of Effects on ACL Injury of Soccer Shoe Outsoles, Soccer Playing Field Surfaces, and Outsole–Surface Interface" Encyclopedia 4, no. 2: 888-899. https://doi.org/10.3390/encyclopedia4020057
APA StyleCicchella, A., & He, J. (2024). A Systematic Review of Effects on ACL Injury of Soccer Shoe Outsoles, Soccer Playing Field Surfaces, and Outsole–Surface Interface. Encyclopedia, 4(2), 888-899. https://doi.org/10.3390/encyclopedia4020057