Skin Substitutes: Filling the Gap in the Reconstructive Algorithm
Abstract
:1. Introduction
2. Skin Substitutes for Reconstruction and Wound Care: Properties and Types
2.1. Properties
2.2. Types
3. Current Uses of Skin Substitutes
3.1. Scalp, Face, and Neck Reconstruction after Oncological Resection, Trauma, and Burns
3.2. Upper Extremities Reconstruction after Burns, Trauma, and Chronic Wounds
3.3. Applications on Lower Extremities Reconstruction
3.4. Applications on Trunk and Spinal Reconstruction
4. The Future of Skin Substitutes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janis, J.E.; Kwon, R.K.; Attinger, C.E. The new reconstructive ladder: Modifications to the traditional model. Plast. Reconstr. Surg. 2011, 127 (Suppl. 1), 205S–212S, Erratum in Plast. Reconstr. Surg. 2020, 146, 1212. [Google Scholar] [CrossRef] [PubMed]
- Bennett, N.; Choudhary, S. Why climb a ladder when you can take the elevator? Plast. Reconstr. Surg. 2000, 105, 2266. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, L.J.; Krieger, L.M. From the reconstructive ladder to the reconstructive elevator. Plast. Reconstr. Surg. 1994, 93, 1503–1504. [Google Scholar] [CrossRef] [PubMed]
- Giordano, V.; Napoli, S.; Quercioli, F.; Mori, A.; Dini, M. The solar system model for the reconstructive ladder. Plast. Reconstr. Surg. 2011, 128, 336–337. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, K.; Vogt, P.M. The reconstructive clockwork of the twenty-first century: An extension of the concept of the reconstructive ladder and reconstructive elevator. Plast. Reconstr. Surg. 2010, 126, 220e–222e. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.P.; Thiruvoth, F.M. Reconstruction 2.0: Restructuring the Reconstructive Ladder. Plast. Reconstr. Surg. 2021, 147, 572e–573e. [Google Scholar] [CrossRef] [PubMed]
- Oualla-Bachiri, W.; Fernández-González, A.; Quiñones-Vico, M.I.; Arias-Santiago, S. From Grafts to Human Bioengineered Vascularized Skin Substitutes. Int. J. Mol. Sci. 2020, 21, 8197. [Google Scholar] [CrossRef] [PubMed]
- Gushiken, L.F.S.; Beserra, F.P.; Bastos, J.K.; Jackson, C.J.; Pellizzon, C.H. Cutaneous Wound Healing: An Update from Physiopathology to Current Therapies. Life 2021, 11, 665. [Google Scholar] [CrossRef] [PubMed]
- Dearman, B.L.; Boyce, S.T.; Greenwood, J.E. Advances in Skin Tissue Bioengineering and the Challenges of Clinical Translation. Front. Surg. 2021, 8, 640879. [Google Scholar] [CrossRef]
- Przekora, A. A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In Vitro? Cells 2020, 9, 1622. [Google Scholar] [CrossRef]
- Petrie, K.; Cox, C.T.; Becker, B.C.; MacKay, B.J. Clinical applications of acellular dermal matrices: A review. Scars Burn. Heal. 2022, 8, 20595131211038313. [Google Scholar] [CrossRef]
- Hicks, K.E.; Huynh, M.N.; Jeschke, M.; Malic, C. Dermal regenerative matrix use in burn patients: A systematic review. J. Plast. Reconstr. Aesthetic Surg. 2019, 72, 1741–1751. [Google Scholar] [CrossRef]
- Panayi, A.C.; Orgill, D.P. Current Use of Biological Scaffolds in Plastic Surgery. Plast. Reconstr. Surg. 2019, 143, 209–220. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Rennekampff, H.O. Current Concepts in Tissue Engineering: Skin and Wound. Plast. Reconstr. Surg. 2016, 138 (Suppl. 3), 42S–50S. [Google Scholar] [CrossRef]
- du Plessis, M.I.; Cottler, P.S.; Campbell, C.A. Acellular Dermal Matrix Favorably Modulates the Healing Response after Surgery. Plast. Reconstr. Surg. 2022, 150, 290e–299e. [Google Scholar] [CrossRef]
- Hughes, O.B.; Rakosi, A.; Macquhae, F.; Herskovitz, I.; Fox, J.D.; Kirsner, R.S. A Review of Cellular and Acellular Matrix Products: Indications, Techniques, and Outcomes. Plast. Reconstr. Surg. 2016, 138 (Suppl. 3), 138S–147S. [Google Scholar] [CrossRef] [PubMed]
- Mazari, F.A.K.; Wattoo, G.M.; Kazzazi, N.H.; Kolar, K.M.; Olubowale, O.O.; Rogers, C.E.; Azmy, I.A. The Comparison of Strattice and SurgiMend in Acellular Dermal Matrix-Assisted, Implant-Based Immediate Breast Reconstruction. Plast. Reconstr. Surg. 2018, 141, 283–293. [Google Scholar] [CrossRef]
- Lanteri Parcells, A.; Abernathie, B.; Datiashvili, R. The use of urinary bladder matrix in the treatment of complicated open wounds. Wounds 2014, 26, 189–196. [Google Scholar] [PubMed]
- Leedy, J.E.; Janis, J.E.; Rohrich, R.J. Reconstruction of Acquired Scalp Defects: An Algorithmic Approach. Plast. Reconstr. Surg. 2005, 116, 54e–72e. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.C.; Sand, J.P.; Sharon, J.D.; Branham, G.; Nussenbaum, B. Scalp reconstruction: An algorithmic approach and systematic review. JAMA Facial Plast. Surg. 2015, 17, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Harirah, M.; Sanniec, K.; Yates, T.; Harirah, O.; Thornton, J.F. Scalp Reconstruction after Mohs Cancer Excision: Lessons Learned from More Than 900 Consecutive Cases. Plast. Reconstr. Surg. 2021, 147, 1165–1175. [Google Scholar] [CrossRef]
- Zayakova, Y.; Stanev, A.; Mihailov, H.; Pashaliev, N. Application of Local Axial Flaps to Scalp Reconstruction. Arch. Plast. Surg. 2013, 40, 564–569. [Google Scholar] [CrossRef]
- Brawley, C.C.; Sidle, D. Scalp reconstructive flaps. Plast. Aesthetic Res. 2022, 9, 6. [Google Scholar] [CrossRef]
- Furnas, H.; Lineaweaver, W.C.; Alpert, B.S.; Buncke, H.J. Scalp Reconstruction by Microvascular Free Tissue Transfer. Ann. Plast. Surg. 1990, 24, 431–444. [Google Scholar] [CrossRef]
- Lembo, F.; Cecchino, L.R.; Parisi, D.; Portincasa, A. Utility of a New Artificial Dermis as a Successful Tool in Face and Scalp Reconstruction for Skin Cancer: Analysis of the Efficacy, Safety, and Aesthetic Outcomes. Dermatol. Res. Pract. 2020, 2020, 4874035. [Google Scholar] [CrossRef] [PubMed]
- Othman, S.B.; Shakir, S.; Azoury, S.C.; Lukowiak, T.B.; Shin, T.M.M.; Sobanko, J.F.; Miller, C.J.; Etzkorn, J.R.; Fischer, J.P.M.; Kovach, S.J. Utility of Dermal Wound Matrices Compared with Local-Tissue Rearrangement and Free Flap Reconstruction for Oncologic Scalp Wounds: A Multidisciplinary Dual Matched-Pair Analysis. Plast. Reconstr. Surg. 2022, 149, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.A.; Lange, J.P.; Jordan, J.R. Reconstruction of Full-Thickness Scalp Defects Using a Dermal Regeneration Template. JAMA Facial Plast. Surg. 2016, 18, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Magnoni, C.; De Santis, G.; Fraccalvieri, M.; Bellini, P.; Portincasa, A.; Giacomelli, L.; Papa, G. Integra in Scalp Reconstruction After Tumor Excision: Recommendations from a Multidisciplinary Advisory Board. J. Craniofacial Surg. 2019, 30, 2416–2420. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.S.; Verma, K. Single-Stage Full-Thickness Scalp Reconstruction Using Acellular Dermal Matrix and Skin Graft. Eplasty 2011, 11, e4. [Google Scholar]
- Chaiyasate, K.M.; Oliver, L.N.D.; Kreitzberg, S.A.D.; Lyons, M.; Goldman, J.; Lu, S.M.M.; Bastiaans, T.D.; Lumley, C.D.; Sachanandani, N.S. Use of Pericranial Flaps with Dermal Substitute for Scalp Reconstruction: A Case Series. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3011. [Google Scholar] [CrossRef]
- Dessy, L.A.; Mazzocchi, M.; Rizzo, M.I.; Onesti, M.G.; Scuderi, G. Scalp reconstruction using dermal induction template: State of the art and personal experience. In Vivo 2013, 27, 153–158, Erratum in In Vivo 2013, 27, 667. [Google Scholar]
- Schiavon, M.; Francescon, M.; Drigo, D.; Salloum, G.; Baraziol, R.; Tesei, J.; Fraccalanza, E.; Barbone, F. The Use of Integra Dermal Regeneration Template Versus Flaps for Reconstruction of Full-Thickness Scalp Defects Involving the Calvaria: A Cost–Benefit Analysis. Aesthetic Plast. Surg. 2016, 40, 901–907. [Google Scholar] [CrossRef]
- Patel, N.K.; Tipps, J.A.B.; Graham, E.M.B.; Taylor, J.A.; Mendenhall, S.D. Reconstruction of a Near-total Scalp Avulsion with NovoSorb Biodegradable Temporizing Matrix: Pediatric Case Report. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4717. [Google Scholar] [CrossRef] [PubMed]
- Wisco, O.J. Case series: The use of a dehydrated human amnion/chorion membrane allograft to enhance healing in the repair of lower eyelid defects after Mohs micrographic surgery. JAAD Case Rep. 2016, 2, 294–297. [Google Scholar] [CrossRef]
- Yang, C.; Xiong, A.B.; He, X.C.; Bin Ding, X.; Tian, X.L.; Li, Y.; Yan, H. Efficacy and feasibility of amniotic membrane for the treatment of burn wounds: A meta-analysis. J. Trauma Inj. Infect. Crit. Care 2020, 90, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Engrav, L.H.; Dutcher, K.A.; Nakamura, D.Y. Rating burn impairment. Clin. Plast. Surg. 1992, 19, 569–598. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.; Cohen, M.J.; Grossman, P.H.; Kulber, D.A. The Use of Acellular Dermal Matrix in Release of Burn Contracture Scars in the Hand. Plast. Reconstr. Surg. 2011, 127, 1593–1599. [Google Scholar] [CrossRef]
- Bhavsar, D.; Tenenhaus, M. The Use of Acellular Dermal Matrix for Coverage of Exposed Joint and Extensor Mechanism in Thermally Injured Patients with Few Options. Eplasty 2008, 8, e33. [Google Scholar]
- Ellis, C.V.; Kulber, D.A. Acellular Dermal Matrices in Hand Reconstruction. Plast. Reconstr. Surg. 2012, 130, 256S–269S, Erratum in Plast. Reconstr. Surg. 2012, 130, 1399. [Google Scholar] [CrossRef]
- Boháč, M.; Danišovič, Ľ.; Koller, J.; Dragúňová, J.; Varga, I. What happens to an acellular dermal matrix after implantation in the human body? A histological and electron microscopic study. Eur. J. Histochem. 2018, 62, 2873. [Google Scholar] [CrossRef]
- Keane, T.J.; Horejs, C.-M.; Stevens, M.M. Scarring vs. functional healing: Matrix-based strategies to regulate tissue repair. Adv. Drug Deliv. Rev. 2018, 129, 407–419. [Google Scholar] [CrossRef]
- Kreymerman, P.A.; Andres, L.A.; Lucas, H.D.; Silverman, A.L.; Smith, A.A. Reconstruction of the Burned Hand. Plast. Reconstr. Surg. 2011, 127, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.W.; Kim, J.K. Prospective Randomized Comparison of Scar Appearances between Cograft of Acellular Dermal Matrix with Autologous Split-Thickness Skin and Autologous Split-Thickness Skin Graft Alone for Full-Thickness Skin Defects of the Extremities. Plast. Reconstr. Surg. 2015, 135, 609e–616e. [Google Scholar] [CrossRef] [PubMed]
- Kawaiah, A.; Thakur, M.; Garg, S.; Kawasmi, S.H.; Hassan, A. Fingertip Injuries and Amputations: A Review of the Literature. Cureus 2020, 12, e8291. [Google Scholar] [CrossRef] [PubMed]
- Namgoong, S.M.; Jung, J.E.; Han, S.-K.M.; Jeong, S.-H.M.; Dhong, E.-S.M. Potential of Tissue-Engineered and Artificial Dermis Grafts for Fingertip Reconstruction. Plast. Reconstr. Surg. 2020, 146, 1082–1095. [Google Scholar] [CrossRef] [PubMed]
- You, H.-J.; Han, S.-K. Cell Therapy for Wound Healing. J. Korean Med. Sci. 2014, 29, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Rehim, S.A.; Singhal, M.; Chung, K.C. Dermal skin substitutes for upper limb reconstruction: Current status, indications, and contraindications. Hand Clin. 2014, 30, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Graham, G.P.; Helmer, S.D.; Haan, J.M.; Khandelwal, A. The use of Integra® Dermal Regeneration Template in the reconstruction of traumatic degloving injuries. J. Burn Care Res. 2013, 34, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Sapienza, A.; Roach, J.B.; Taras, J.P. Acellular Dermal Regeneration Template for Soft Tissue Reconstruction of the Digits. J. Hand Surg. 2010, 35, 415–421. [Google Scholar]
- Helgeson, M.D.; Potter, B.K.; Evans, K.N.; Shawen, S.B. Bioartificial Dermal Substitute: A Preliminary Report on Its Use for the Management of Complex Combat-Related Soft Tissue Wounds. J. Orthop. Trauma 2007, 21, 394–399. [Google Scholar] [CrossRef]
- Cheng, C.; Kwiecien, G.J.; Rowe, D.J.; Gatherwright, J.R.; Chepla, K.J. Reconstruction of Chronic Wounds Secondary to Injectable Drug Use with a Biodegradable Temporizing Matrix. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3678. [Google Scholar] [CrossRef] [PubMed]
- Solanki, N.S.; York, B.; Gao, Y.; Baker, P.; She, R.B.W. A consecutive case series of defects reconstructed using NovoSorb® Biodegradable Temporising Matrix: Initial experience and early results. J. Plast. Reconstr. Aesthetic Surg. 2020, 73, 1845–1853. [Google Scholar] [CrossRef]
- Li, H.; Lim, P.; Stanley, E.; Lee, G.; Lin, S.; Neoh, D.; Liew, J.; Ng, S.K. Experience with NovoSorb® Biodegradable Temporising Matrix in reconstruction of complex wounds. ANZ J. Surg. 2021, 91, 1744–1750. [Google Scholar] [CrossRef]
- Taylor, E.M.; Hamaguchi, R.B.; Kramer, K.M.; Kimball, A.B.M.; Orgill, D.P.M. Plastic Surgical Management of Hidradenitis Suppurativa. Plast. Reconstr. Surg. 2021, 147, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, T.A.; Endorf, F.W.; Mohr, W.J.; Ahrenholz, D.H. Novel Surgical Approach for Axillary Hidradenitis Suppurativa Using a Bilayer Dermal Regeneration Template. J. Burn Care Res. 2013, 34, 51–57. [Google Scholar] [CrossRef]
- Kraft, C.; Pearson, G. Axillary hidradenitis reconstruction using a dermal regeneration template. Wounds 2022, 34, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Amendola, F.; Cottone, G.; Alessandri-Bonetti, M.; Borelli, F.; Catapano, S.; Carbonaro, R.; Riccardi, F.; Vaienti, L. Reconstruction of the Axillary Region after Excision of Hidradenitis Suppurativa: A Systematic Review. Indian J. Plast. Surg. 2022, 56, 6. [Google Scholar] [CrossRef]
- Frame, J.D.; Still, J.; Lakhel-LeCoadou, A.; Carstens, M.H.; Lorenz, C.; Orlet, H.; Spence, R.; Berger, A.; Dantzer, E.; Burd, A. Use of dermal regeneration template in contracture release procedures: A multicenter evaluation. Plast. Reconstr. Surg. 2004, 113, 1330–1338. [Google Scholar] [CrossRef]
- Deldar, R.; Merle, C.; Attinger, C.E.; Evans, K.K. Soft tissue coverage of lower extremity defects: Pearls and pitfalls in the chronic wound population. Plast. Aesthetic Res. 2022, 9, 13. [Google Scholar] [CrossRef]
- Lachica, R.D. Evidence-Based Medicine: Management of Acute Lower Extremity Trauma. Plast. Reconstr. Surg. 2017, 139, 287e–301e. [Google Scholar] [CrossRef]
- Tork, S.; Jefferson, R.C.; Janis, J.E. Acellular Dermal Matrices: Applications in Plastic Surgery. Semin. Plast. Surg. 2019, 33, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Hwang, K.T.; Kim, K.H.; Sung, I.H.; Kim, S.W. Application of acellular human dermis and skin grafts for lower extremity reconstruction. J. Wound Care 2019, 28, S12–S17. [Google Scholar] [CrossRef] [PubMed]
- Kozak, G.M.; Hsu, J.Y.; Broach, R.B.; Shakir, S.; Calvert, C.; Stranix, J.T.; Messa, C.I.B.; Levin, L.S.; Serletti, J.M.; Kovach, S.J.; et al. Comparative Effectiveness Analysis of Complex Lower Extremity Reconstruction: Outcomes and Costs for Biologically Based, Local Tissue Rearrangement, and Free Flap Reconstruction. Plast. Reconstr. Surg. 2020, 145, 608e–616e. [Google Scholar] [CrossRef] [PubMed]
- Pontell, M.E.; Saad, N.; Winters, B.S.; Daniel, J.N.; Saad, A. Reverse Sural Adipofascial Flaps with Acellular Dermal Matrix and Negative-Pressure Wound Therapy. Adv. Ski. Wound Care 2018, 31, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Cazzell, S. A Randomized Controlled Trial Comparing a Human Acellular Dermal Matrix Versus Conventional Care for the Treatment of Venous Leg Ulcers. Wounds 2019, 31, 68–74. [Google Scholar] [PubMed]
- Kavros, S.J.; Dutra, T.; Gonzalez-Cruz, R.; Liden, B.; Marcus, B.; McGuire, J.; Nazario-Guirau, L. The use of PriMatrix, a fetal bovine acellular dermal matrix, in healing chronic diabetic foot ulcers: A prospective multicenter study. Adv. Ski. Wound Care 2014, 27, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Papa, G.; Spazzapan, L.; Pangos, M.; Delpin, A.; Arnez, Z.M. Compared to coverage by STSG grafts only reconstruction by the dermal substitute Integra® plus STSG increases TcPO2 values in diabetic feet at 3 and 6 months after reconstruction. Il G. Chir. 2014, 35, 141–145. [Google Scholar] [CrossRef]
- Baumann, D.P.; Roubaud, M.S. Flap Reconstruction of the Abdominal Wall. Semin. Plast. Surg. 2018, 32, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, D.W.; Hart, A.M.; Keifer, O.P.; Halani, S.H.; Losken, A. A Comparison of Acellular Dermal Matrices in Abdominal Wall Reconstruction. Ann. Plast. Surg. 2019, 82, 435–440. [Google Scholar] [CrossRef]
- Rohrich, R.J.; Lowe, J.B.; Hackney, F.L.; Bowman, J.L.; Hobar, P.C. An algorithm for abdominal wall reconstruction. Plast. Reconstr. Surg. 2000, 105, 202–216. [Google Scholar] [CrossRef]
- Kolker, A.R.; Brown, D.J.; Redstone, J.S.; Scarpinato, V.M.; Wallack, M.K. Multilayer reconstruction of abdominal wall defects with acellular dermal allograft (AlloDerm) and component separation. Ann. Plast. Surg. 2005, 55, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Buinewicz, B.; Rosen, B. Acellular cadaveric dermis (AlloDerm): A new alternative for abdominal hernia repair. Ann. Plast. Surg. 2004, 52, 188–194. [Google Scholar] [CrossRef] [PubMed]
- De Moya, M.A.; Dunham, M.; Inaba, K.; Bahouth, H.; Alam, H.B.; Sultan, B.; Namias, N. Long-term outcome of acellular dermal matrix when used for large traumatic open abdomen. J. Trauma 2008, 65, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Garvey, P.B.; Giordano, S.A.; Baumann, D.P.; Liu, J.; Butler, C.E. Long-Term Outcomes after Abdominal Wall Reconstruction with Acellular Dermal Matrix. J. Am. Coll. Surg. 2017, 224, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Garvey, P.B.; Martinez, R.A.; Baumann, D.P.; Liu, J.; Butler, C.E. Outcomes of abdominal wall reconstruction with acellular dermal matrix are not affected by wound contamination. J. Am. Coll. Surg. 2014, 219, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Taibi, A.; Derbal, S.; Fontanier, S.D.; Christou, N.; Fredon, F.; Bouvier, S.; Fabre, A.; Rivaille, T.; Valleix, D.; Mathonnet, M. Implantation of biologic mesh in ventral hernia repair—Does it make sense? Surg. Endosc. 2021, 35, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Adamo, S.; Gossetti, F.; D’Amore, L.; Ceci, F.; Negro, P.; Bruzzone, P.; Amore, D. Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application? Materials 2019, 12, 2375. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.W.; Salgado, C.J.; Kent, K.; Finnegan, M.; Pello, M.; Simons, R.; Atabek, U.; Kann, B. Evaluation of porcine dermal collagen (Permacol) used in abdominal wall reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2009, 62, 1484–1489. [Google Scholar] [CrossRef] [PubMed]
- Beale, E.W.; Hoxworth, R.E.; Livingston, E.H.; Trussler, A.P. The role of biologic mesh in abdominal wall reconstruction: A systematic review of the current literature. Am. J. Surg. 2012, 204, 510–517. [Google Scholar] [CrossRef]
- Sosin, M.; Nahabedian, M.Y.; Bhanot, P. The Perfect Plane: A Systematic Review of Mesh Location and Outcomes, Update 2018. Plast. Reconstr. Surg. 2018, 142, 107S–116S. [Google Scholar] [CrossRef]
- Albino, F.P.; Patel, K.M.; Nahabedian, M.Y.; Sosin, M.; Attinger, C.E.; Bhanot, P. Does Mesh Location Matter in Abdominal Wall Reconstruction? A Systematic Review of the Literature and a Summary of Recommendations. Plast. Reconstr. Surg. 2013, 132, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Fuenmayor, P.; Lujan, H.J.; Plasencia, G.; Karmaker, A.; Mata, W.; Vecin, N. Robotic-assisted ventral and incisional hernia repair with hernia defect closure and intraperitoneal onlay mesh (IPOM) experience. J. Robot. Surg. 2020, 14, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.J.; Bauer, J.J.; Harmaty, M.; Carbonell, A.M.; Cobb, W.S.; Matthews, B.; Matthews, I.; Selzer, D.J.; Poulose, B.K.; Hansson, B.M.E.; et al. Multicenter, prospective, longitudinal study of the recurrence, surgical site infection, and quality of life after contaminated ventral hernia repair using biosynthetic absorbable mesh: The COBRA study. Ann. Surg. 2017, 265, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.J.; Krpata, D.M.; Petro, C.C.; Carbonell, A.; Warren, J.; Poulose, B.K.; Costanzo, A.; Tu, C.; Blatnik, J.; Prabhu, A.S. Biologic vs. Synthetic Mesh for Single-stage Repair of Contaminated Ventral Hernias. JAMA Surg. 2022, 157, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.M.; Jacobsen, G.R. A Current Review of Hybrid Meshes in Abdominal Wall Reconstruction. Plast. Reconstr. Surg. 2018, 142, 92S–96S. [Google Scholar] [CrossRef] [PubMed]
- Irvine, S.M.; Cayzer, J.; Todd, E.M.; Lun, S.; Floden, E.W.; Negron, L.; Fisher, J.N.; Dempsey, S.G.; Alexander, A.; Hill, M.C.; et al. Quantification of in vitro and in vivo angiogenesis stimulated by ovine forestomach matrix biomaterial. Biomaterials 2011, 32, 6351–6361. [Google Scholar] [CrossRef] [PubMed]
- Bittner, J.G.; El-Hayek, K.; Strong, A.T.; LaPinska, M.P.; Yoo, J.S.; Pauli, E.M.; Kroh, M. First human use of hybrid synthetic/biologic mesh in ventral hernia repair: A multicenter trial. Surg. Endosc. 2017, 32, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.A.B.; Weinstein, A.L.M.; Bernstein, J.L.; Franck, P.; Lara, D.O.B.; Samadi, A.B.; Cohen, L.E.; Härtl, R.; Baaj, A.A.; Spector, J.A. Muscle Flap Closure following Complex Spine Surgery: A Decade of Experience. Plast. Reconstr. Surg. 2020, 146, 642e–650e. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Brown, J.; Shafiee, A. Strategies to Induce Blood Vessel Ingrowth into Skin Grafts and Tissue-Engineered Substitutes. Tissue Eng. Part C Methods 2022, 28, 113–126. [Google Scholar] [CrossRef]
- Oliveira, A.; Simões, S.; Ascenso, A.; Reis, C.P. Therapeutic advances in wound healing. J. Dermatol. Treat. 2022, 33, 2–22. [Google Scholar] [CrossRef]
- Finnson, K.W.; McLean, S.; Di Guglielmo, G.M.; Philip, A. Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring. Adv. Wound Care 2013, 2, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Moretti, L.; Stalfort, J.; Barker, T.H.; Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 2022, 298, 101530. [Google Scholar] [CrossRef] [PubMed]
- Maita, K.C.; Avila, F.R.; Torres-Guzman, R.A.; Garcia, J.P.; Eldaly, A.S.; Palmieri, L.; Emam, O.S.; Ho, O.; Forte, A.J. Local anti-inflammatory effect and immunomodulatory activity of chitosan-based dressing in skin wound healing: A systematic review. J. Clin. Transl. Res. 2022, 8, 488–498. [Google Scholar] [PubMed]
- Fayyazbakhsh, F.; Leu, M.C. A Brief Review on 3D Bioprinted Skin Substitutes. Procedia Manuf. 2020, 48, 790–796. [Google Scholar] [CrossRef]
- Roh, D.S.; Li, E.B.-H.; Liao, E.C. CRISPR Craft: DNA Editing the Reconstructive Ladder. Plast. Reconstr. Surg. 2018, 142, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; Fan, K.S.; Wei, L.; Kolar, M.K. Gene therapy in wound healing using nanotechnology. Wound Repair Regen. 2021, 29, 225–239. [Google Scholar] [CrossRef]
- Samsell, B.; McLean, J.; Cazzell, S.; Dorsch, K.; Moyer, P.M.; Moore, M. Health economics for treatment of diabetic foot ulcers: A cost-effectiveness analysis of eight skin substitutes. J. Wound Care 2019, 28 (Suppl. 9), S14–S26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuenmayor, P.; Huaman, G.; Maita, K.; Schwemmer, K.; Soliman, W.; Abdelmoneim, S.; Pintos, S.; Dickinson, M.; Gonzalez, E.; Castrellon, R. Skin Substitutes: Filling the Gap in the Reconstructive Algorithm. Trauma Care 2024, 4, 148-166. https://doi.org/10.3390/traumacare4020012
Fuenmayor P, Huaman G, Maita K, Schwemmer K, Soliman W, Abdelmoneim S, Pintos S, Dickinson M, Gonzalez E, Castrellon R. Skin Substitutes: Filling the Gap in the Reconstructive Algorithm. Trauma Care. 2024; 4(2):148-166. https://doi.org/10.3390/traumacare4020012
Chicago/Turabian StyleFuenmayor, Pedro, Gustavo Huaman, Karla Maita, Kelly Schwemmer, Wes Soliman, Sahar Abdelmoneim, Stephanie Pintos, Mark Dickinson, Edward Gonzalez, and Ricardo Castrellon. 2024. "Skin Substitutes: Filling the Gap in the Reconstructive Algorithm" Trauma Care 4, no. 2: 148-166. https://doi.org/10.3390/traumacare4020012
APA StyleFuenmayor, P., Huaman, G., Maita, K., Schwemmer, K., Soliman, W., Abdelmoneim, S., Pintos, S., Dickinson, M., Gonzalez, E., & Castrellon, R. (2024). Skin Substitutes: Filling the Gap in the Reconstructive Algorithm. Trauma Care, 4(2), 148-166. https://doi.org/10.3390/traumacare4020012