A Fluid–Structure Interaction Analysis to Investigate the Influence of Magnetic Fields on Plaque Growth in Stenotic Bifurcated Arteries
Abstract
:1. Introduction
2. FSI Problem Formulation
2.1. Fluid Model
2.2. Structure Model
2.3. ALE Form of Fluid–Structure Interaction Equations
3. FEM Discretization
Weak Formulation
4. Numerical Solution
5. Mathematical Model
- Conservation of mass
- Conservation of momentum
- Conservation of momentum
Problem Description
6. Results and Discussion
6.1. Displacement
6.2. Velocity Profile at Positions A and B
6.3. Pressure
6.4. Wall Shear Stress
- The presence of a magnetic field, described through the parameter Ha, in increasing order, reduces the size of the cavity in the same order adjacent to stenosis.
- The presence of a magnetic field decreases the gain in velocity after stenosis as compared to a purely hydrodynamic case, i.e., Ha = 0. For instance, in the case of Re = 500, when Ha = 0, velocity gain is 41%, and when Ha = 12, velocity gain is only 18%.
- The pressure becomes higher with the increase in Hartmann number values, i.e., Ha = 0, 8, 10, 12.
- A flow with a small Reynolds number, i.e., Re = 500, and a higher value of the magnetic field parameter, i.e., Ha = 12, gives significant rise to wall shear stress.
- The wall displacement is large when Re = 500 and Ha = 12, and the maximum wall displacement is observed just before the stenosis.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Source: Global Health Estimates 2016: Death by Cause, Age, Sex, by Country and by Region, 2000–2016; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Palombo, C.; Kozakova, M. Arterial stiffness, atherosclerosis and cardiovascular risk: Pathophysiologic mechanisms and emerging clinical indications. Vasc. Pharmacol. 2016, 77, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleki, F.; Hayat, S.M.G.; Bianconi, V.; Johnston, T.P.; Sahebkar, A. Atherosclerosis and immunity: A perspective. Trends Cardiovasc. Med. 2019, 29, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Xia, W.; Zhu, Y.; Wang, M.; Chang, X.; Jin, S.; Wang, J.; An, L. Prevalence of carotid atherosclerosis and carotid plaque in Chinese adults: A systematic review and meta-regression analysis. Atherosclerosis 2018, 276, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Jamalabadi, M.Y.A.; Bidokhti, A.A.A.; Rah, H.K.; Vaezi, S.; Hooshmand, P. Numerical Investigation of Oxygenated and Deoxygenated Blood Flow through a Tapered Stenosed Arteries in Magnetic Field. PLoS ONE 2016, 11, e0167393. [Google Scholar] [CrossRef]
- Luo, K.; Jiang, W.; Yu, C.; Tian, X.; Zhou, Z.; Ding, Y. Fluid–Solid interaction analysis on iliac bifurcation artery: A numerical study. Int. J. Comput. Methods 2019, 16, 1850112. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Howarth, S.; Trivedi, R.A.; U-King-Im, J.M.; Graves, M.J.; Brown, A.; Wang, L.; Gillard, J.H. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 2006, 39, 2611–2622. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Yang, C.; Zheng, J.; Woodard, P.K.; Saffitz, J.E.; Sicard, G.A.; Pilgram, T.K.; Yuan, C. Quantifying Effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D fsi models. J. Biomech. Eng. 2005, 127, 1185–1194. [Google Scholar] [CrossRef]
- Dutra, R.; Zinani, F.; Rocha, L.; Biserni, C. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design. Comput. Methods Programs Biomed. 2021, 201, 105944. [Google Scholar] [CrossRef]
- De Nisco, G.; Hoogendoorn, A.; Chiastra, C.; Gallo, D.; Kok, A.M.; Morbiducci, U.; Wentzel, J.J. The impact of helical flow on coronary atherosclerotic plaque development. Atherosclerosis 2020, 300, 39–46. [Google Scholar] [CrossRef]
- Hoogendoorn, A.; Kok, A.M.; Hartman, E.M.J.; de Nisco, G.; Casadonte, L.; Chiastra, C.; Coenen, A.; Korteland, S.-A.; Van der Heiden, K.; Gijsen, F.J.H.; et al. Multidirectional wall shear stress promotes advanced coronary plaque development: Comparing five shear stress metrics. Cardiovasc. Res. 2020, 116, 1136–1146. [Google Scholar] [CrossRef]
- Pinto, S.I.S.; Campos, J.B.L.M. Numerical study of wall shear stress-based descriptors in the human left coronary artery. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 1443–1455. [Google Scholar] [CrossRef] [PubMed]
- Naylor, A.; Mehta, Z.; Rothwell, P.; Bell, P. Reprinted Article “Carotid Artery disease and stroke during coronary artery bypass: A critical review of the literature”. Eur. J. Vasc. Endovasc. Surg. 2010, 42, S73–S83. [Google Scholar] [CrossRef]
- Bijari, P.B.; Wasserman, B.A.; Steinman, D.A. Carotid bifurcation geometry is an independent predictor of early wall thickening at the carotid bulb. Stroke 2014, 45, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, U.; Katiyar, V. Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube. J. Magn. Magn. Mater. 2015, 377, 395–401. [Google Scholar] [CrossRef]
- Tashtoush, B.; Magableh, A. Magnetic field effect on heat transfer and fluid flow characteristics of blood flow in multi-stenosis arteries. Heat Mass Transf. 2008, 44, 297–304. [Google Scholar] [CrossRef]
- Varshney, G.; Katiyar, V.; Kumar, S. Effect of magnetic field on the blood flow in artery having multiple stenosis: A numerical study. Int. J. Eng. Sci. Technol. 2010, 2, 967–982. [Google Scholar] [CrossRef]
- Xenos, M.A.; Tzirtzilakis, E.E. MHD effects on blood flow in a stenosis. Adv. Dyn. Syst. Appl. 2013, 8, 427–437. [Google Scholar]
- Ikbal, M.; Chakravarty, S.; Wong, K.K.; Mazumdar, J.; Mandal, P. Unsteady response of non-Newtonian blood flow through a stenosed artery in magnetic field. J. Comput. Appl. Math. 2009, 230, 243–259. [Google Scholar] [CrossRef]
- Johnston, B.M.; Johnston, P.R.; Corney, S.; Kilpatrick, D. Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. J. Biomech. 2004, 37, 709–720. [Google Scholar] [CrossRef]
- Berger, S.A.; Jou, L.-D. Flows in Stenotic Vessels. Annu. Rev. Fluid Mech. 2000, 32, 347–382. [Google Scholar] [CrossRef]
- Fetecau, C.; Shah, N.A.; Vieru, D. General solutions for hydromagnetic free convection flow over an infinite plate with newtonian heating, mass diffusion and chemical reaction. Commun. Theor. Phys. 2017, 68, 768. [Google Scholar] [CrossRef]
- Pedley, T.J. The Fluid Mechanics of Large Blood Vessels; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Turek, S.; Hron, J.; Razzaq, M.; Wobker, H.; Schäfer, M. Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches; Springer: Berlin/Heidelberg, Germany, 2010; pp. 413–424. [Google Scholar]
- Park, K.C.; Felippa, C.A. Partitioned analysis of coupled systems. In Computational Methods for Transient Analysis; Belytschko, T., Hughes, T.J.R., Eds.; North-Holland: Amsterdam, The Netherlands; New York, NY, USA, 1983; ISBN 10. [Google Scholar]
- Razzaq, M. Numerical Techniques for Solving Fluid-Structure Interaction Problems with Applications to Bio-Engineering. Ph.D. Thesis, TU Dortmund, Clemson, SC, USA, 2011. [Google Scholar] [CrossRef]
- Razzaq, M.; Hron, J.; Turek, S. Numerical Simulation of Laminar Incompressible Fluid-Structure Interaction for Elastic Material with Point Constraints. In Advances in Mathematical Fluid Mechanics; Rannacher, R., Sequeira, A., Eds.; Springer: Berlin/Hei-delberg, Germany, 2010. [Google Scholar] [CrossRef]
- Mokhefi, A.; di Schio, E.R. Effect of a magnetic field on the Couette forced convection of a Buongiorno’s nanofluid over an embedded cavity. JP J. Heat Mass Transf. 2022, 30, 89–104. [Google Scholar] [CrossRef]
- Ervin, V.J.; Jenkins, E.W. The LBB Condition for the Taylor-Hood P2-P1 and Scott-Vogelius P2-discP1 element pairs in 2-D; Technical Report TR2011 04 EJ; Clemson University: Clemson, SC, USA, 2011. [Google Scholar]
- Kelley, C.T. Iterative methods for optimization. Soc. Ind. Appl. Math. 1999. [Google Scholar] [CrossRef]
- Mustafa, B.T.; Yaba, S.P.; Ismail, A.H. A review of the Effects of Magnetic Field on main blood cells: In vivo and in vitro ex-periments. ZANCO J. Pure Appl. Sci. 2019, 31, 40–50. [Google Scholar]
- Perktold, K.; Rappitsch, G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 1995, 28, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Oosthuizen, P.H.; Carscallen, W.E. Compressible Fluid Flow; McGraw-Hill: New York, NY, USA, 1997; Volume 179. [Google Scholar]
- Schussnig, R.; Pacheco, D.R.; Kaltenbacher, M.; Fries, T.-P. Semi-implicit fluid–structure interaction in biomedical applications. Comput. Methods Appl. Mech. Eng. 2022, 400, 115489. [Google Scholar] [CrossRef]
- A Anwar, M.; Iqbal, K.; Razzaq, M. Analysis of biomagnetic blood flow in a stenosed bifurcation artery amidst elastic walls. Phys. Scr. 2021, 96, 085202. [Google Scholar] [CrossRef]
- Hesch, C.; Betsch, P. Continuum Mechanical Considerations for Rigid Bodies and Fluid-Structure Interaction Problems. Arch. Mech. Eng. 2013, 60, 95–108. [Google Scholar] [CrossRef]
- Amaya, R.; Pierides, A.; Tarbell, J.M. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression. PLoS ONE 2015, 10, e0129952. [Google Scholar] [CrossRef]
- Mokhefi, A.; Di Schio, E.R.; Valdiserri, P.; Biserni, C. Influence of Nanoparticles and Magnetic Field on the Laminar Forced Convection in a Duct Containing an Elastic Fin. WSEAS Trans. Heat Mass Transf. 2023, 18, 69–83. [Google Scholar] [CrossRef]
- Bozzi, S.; Morbiducci, U.; Gallo, D.; Ponzini, R.; Rizzo, G.; Bignardi, C.; Passoni, G. Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, A.; Boccadifuoco, A.; Celi, S.; Salvetti, M. Hemodynamics and stresses in numerical simulations of the thoracic aorta: Stochastic sensitivity analysis to inlet flow-rate waveform. Comput. Fluids 2021, 230, 105123. [Google Scholar] [CrossRef]
Step | Description |
---|---|
1 | Nonlinear tolerance parameter input |
2 | Initialized n = 0. Take as a starting guess |
3 | Build the residual vector |
4 | Compute the Jacobian matrix = |
5 | Go to the linear system for correction of = |
6 | Find an optimal step length ∈ (−1, 0] |
7 | Update the solution = + |
Mesh Level | Mesh Elements | Wall Shear Stress | Abs Error |
---|---|---|---|
0 | 1478 | 0.072341 | - |
1 | 1922 | 0.072244 | 0.000097 |
2 | 2432 | 0.072347 | 0.000103 |
3 | 7528 | 0.072557 | 0.000210 |
4 | 22153 | 0.072601 | 0.000040 |
5 | 24322 | 0.072600 | 0.000001 |
Re = 500 | Re = 500 | Re = 1000 | Re = 1000 | |
Ha | FSI | CFD | FSI | CFD |
0 | 0.5595 | 0.5846 | 0.5774 | 0.5959 |
8 | 0.5443 | 0.5884 | 0.5624 | 0.5914 |
10 | 0.5358 | 0.5783 | 0.5504 | 0.5865 |
12 | 0.5169 | 0.5709 | 0.5424 | 0.5825 |
Re = 500 | Re = 1000 | |||||
Ha | A | B | Gain % | A | B | Gain % |
0 | 0.49 | 0.69 | 41 | 0.50 | 0.70 | 40 |
8 | 0.42 | 0.62 | 24 | 0.45 | 0.61 | 36 |
10 | 0.37 | 0.56 | 23 | 0.42 | 0.56 | 33 |
12 | 0.34 | 0.40 | 18 | 0.37 | 0.51 | 38 |
Re = 1500 | Re = 2000 | |||||
Ha | A | B | Gain % | A | B | Gain % |
0 | 0.50 | 0.71 | 42 | 0.51 | 0.72 | 39 |
8 | 0.46 | 0.65 | 41 | 0.47 | 0.66 | 40 |
10 | 0.45 | 0.61 | 36 | 0.46 | 0.64 | 39 |
12 | 0.42 | 0.57 | 36 | 0.43 | 0.60 | 40 |
Ha | Re = 500 | Re = 1000 | Re = 1500 | Re = 2000 |
0 | 0.05476 | 0.03018 | 0.02161 | 0.01716 |
8 | 0.06673 | 0.03522 | 0.02457 | 0.01918 |
10 | 0.07223 | 0.03807 | 0.02623 | 0.02030 |
12 | 0.07776 | 0.04128 | 0.02824 | 0.02165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, K.; Rossi di Schio, E.; Anwar, M.A.; Razzaq, M.; Shahzad, H.; Valdiserri, P.; Fabbri, G.; Biserni, C. A Fluid–Structure Interaction Analysis to Investigate the Influence of Magnetic Fields on Plaque Growth in Stenotic Bifurcated Arteries. Dynamics 2024, 4, 572-591. https://doi.org/10.3390/dynamics4030030
Iqbal K, Rossi di Schio E, Anwar MA, Razzaq M, Shahzad H, Valdiserri P, Fabbri G, Biserni C. A Fluid–Structure Interaction Analysis to Investigate the Influence of Magnetic Fields on Plaque Growth in Stenotic Bifurcated Arteries. Dynamics. 2024; 4(3):572-591. https://doi.org/10.3390/dynamics4030030
Chicago/Turabian StyleIqbal, Kaleem, Eugenia Rossi di Schio, Muhammad Adnan Anwar, Mudassar Razzaq, Hasan Shahzad, Paolo Valdiserri, Giampietro Fabbri, and Cesare Biserni. 2024. "A Fluid–Structure Interaction Analysis to Investigate the Influence of Magnetic Fields on Plaque Growth in Stenotic Bifurcated Arteries" Dynamics 4, no. 3: 572-591. https://doi.org/10.3390/dynamics4030030
APA StyleIqbal, K., Rossi di Schio, E., Anwar, M. A., Razzaq, M., Shahzad, H., Valdiserri, P., Fabbri, G., & Biserni, C. (2024). A Fluid–Structure Interaction Analysis to Investigate the Influence of Magnetic Fields on Plaque Growth in Stenotic Bifurcated Arteries. Dynamics, 4(3), 572-591. https://doi.org/10.3390/dynamics4030030