Orbit Rendezvous Maneuvers in Cislunar Space via Nonlinear Hybrid Predictive Control
Abstract
:1. Introduction
2. Orbital Motion of Gateway
3. Relative Orbit Dynamics
- indicates the inertial position vector of the target, ;
- represents the gravitational parameter of the main attracting body (i.e., the Moon);
- is the sum of all the relevant perturbing accelerations acting on the target.
- indicates the inertial position vector of the chaser, ;
- is the sum of all the relevant perturbing accelerations acting on the chaser;
- represents the thrust acceleration of the chaser.
- is parallel to the position vector of the spacecraft with respect to the main body, i.e., the Moon;
- is parallel to the spacecraft angular momentum;
- completes the right-hand triad.
- represents the Right Ascension of the Ascending Node (RAAN),
- i indicates the orbit inclination, and
- is the argument of latitude, with and denoting the argument of periapse and true anomaly, respectively.
- the expressions of and take the time variations of COE into account, unlike the case of unperturbed Keplerian motion;
- the target perturbing acceleration is also explicitly included in Equation (6).
4. Rendezvous Strategy
5. Feedback Control Techniques
5.1. Feedback Linearization
- error components show a critical damping behavior, with convergence toward the desired values, without the occurrence of overshooting;
- the initial thrust acceleration magnitude is exactly equal to the maximum available value.
5.2. Nonlinear Hybrid Predictive Control
6. Rendezvous in Nominal Conditions
6.1. Initial Radial Position and Velocity
6.2. Initial Radial Position and Transversal Velocity
6.3. Relative Velocity Sphere
- impact, when the relative distance reaches a value lower than 5 m;
- unsuccessful rendezvous, when at least one of the following situation occurs:
- at any time;
- the error on the norm of the final relative position or velocity is higher than of the desired value. For the desired final relative state, this implies a tolerance of 5 cm and 0.1 mm/s, respectively;
- successful rendezvous, when none of the previous cases occur.
7. Rendezvous in Nonnominal Conditions
- temporary propulsion unavailability;
- thrust pointing errors.
7.1. Temporary Propulsion Unavailability
- temporary malfunction;
- temporary reduction of electric power due to solar eclipse or power supply issues implying thrust unavailability;
- nonnominal attitude that is inconsistent with the desired thrust pointing direction, e.g., due to the requirement of different pointing of the antennas.
7.2. Thrust Pointing Errors
- , defined as the angle from and the projection of onto the ()-plane; it is generated as a uniform random variable ranging from 0 to ;
- , defined as the angle between and ; it is generated according to a normal distribution, characterized by mean value and standard deviation . The distribution is truncated to .
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BG | Battin–Giorgi |
COE | Classical Orbit Elements |
CR3BP | Circular Restricted 3-Body Problem |
DRO | Distant Retrograde Orbit |
LLO | Low Lunar Orbit |
LVLH | Local Vertical Local Horizontal |
MC | Monte Carlo |
MEE | Modified Equinoctial Elements |
NAIF | Navigation Ancillary Information Facility |
NRHO | Near Rectilinear Halo Orbit |
RAAN | Right Ascension of The Ascending Node |
References
- NASA. Artemis Plan. 2020. Available online: https://www.nasa.gov/wp-content/uploads/2020/12/artemis_plan-20200921.pdf (accessed on 12 January 2024).
- NASA. What Is CAPSTONE? Available online: https://www.nasa.gov/smallspacecraft/capstone/ (accessed on 12 January 2024).
- Howell, K.C.; Kakoi, M. Transfers between the Earth–Moon and Sun–Earth systems using manifolds and transit orbits. Acta Astronaut. 2006, 59, 367–380. [Google Scholar] [CrossRef]
- Alessi, E.M.; Gomez, G.; Masdemont, J.J. Two-manoeuvres transfers between LEOs and Lissajous orbits in the Earth–Moon system. Adv. Space Res. 2010, 45, 1276–1291. [Google Scholar] [CrossRef]
- Pontani, M.; Teofilatto, P. Polyhedral representation of invariant manifolds applied to orbit transfers in the Earth–Moon system. Acta Astronaut. 2016, 119, 218–232. [Google Scholar] [CrossRef]
- Singh, S.K.; Anderson, B.D.; Taheri, E.; Junkins, J.L. Low-thrust transfers to southern L 2 near-rectilinear halo orbits facilitated by invariant manifolds. J. Optim. Theory Appl. 2021, 191, 517–544. [Google Scholar] [CrossRef]
- Parrish, N.L.; Parker, J.S.; Hughes, S.P.; Heiligers, J. Low-thrust transfers from distant retrograde orbits to L2 halo orbits in the Earth-Moon system. In Proceedings of the International Conference on Astrodynamics Tools and Techniques 2016, Darmstadt, Germany, 14–17 March 2016. [Google Scholar]
- Pino, B.P.; Howell, K.C.; Folta, D. An energy-informed adaptive algorithm for low-thrust spacecraft cislunar trajectory design. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 2020, South Lake Tahoe, CA, USA, 9–12 August 2020. [Google Scholar]
- Pritchett, R.E. Strategies for Low-Thrust Transfer Design Based on Direct Collocation Techniques. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2020. [Google Scholar]
- Das-Stuart, A.; Howell, K.C.; Folta, D.C. Rapid trajectory design in complex environments enabled by reinforcement learning and graph search strategies. Acta Astronaut. 2020, 171, 172–195. [Google Scholar] [CrossRef]
- McCarty, S.L.; Burke, L.M.; McGuire, M. Parallel monotonic basin hopping for low thrust trajectory optimization. In Proceedings of the 2018 Space Flight Mechanics Meeting, Kissimmee, FL, USA, 8–12 January 2018; p. 1452. [Google Scholar]
- Vutukuri, S. Spacecraft Trajectory Design Techniques Using Resonant Orbits. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 2018. [Google Scholar]
- Zimovan-Spreen, E.M.; Howell, K.C. Dynamical structures nearby NRHOS with applications in cislunar space. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference 2019, Portland, ME, USA, 10–15 August 2019; p. 18. [Google Scholar]
- Whitley, R.; Martinez, R. Options for staging orbits in cislunar space. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–9. [Google Scholar]
- Rozek, M.; Ogawa, H.; Ueda, S.; Ikenaga, T. Multi-objective optimisation of NRHO-LLO orbit transfer via surrogate-assisted evolutionary algorithms. In Proceedings of the 27th International Symposium on Space Flight Dynamics, Melbourne, Australia, 24–28 February 2019. [Google Scholar]
- Lu, L.; Li, H.; Zhou, W.; Liu, J. Design and analysis of a direct transfer trajectory from a near rectilinear halo orbit to a low lunar orbit. Adv. Space Res. 2021, 67, 1143–1154. [Google Scholar] [CrossRef]
- Bucchioni, G.; Innocenti, M. Phasing maneuver analysis from a low lunar orbit to a near rectilinear halo orbit. Aerospace 2021, 8, 70. [Google Scholar] [CrossRef]
- Giordano, C.; Topputo, F. Analysis, Design, and Optimization of Robust Trajectories in Cislunar Environment for Limited-Capability Spacecraft. J. Astronaut. Sci. 2023, 70, 53. [Google Scholar] [CrossRef]
- Sanna, D.; Leonardi, E.M.; De Angelis, G.; Pontani, M. Optimal Impulsive Orbit Transfers from Gateway to Low Lunar Orbit. Aerospace 2024, 11, 460. [Google Scholar] [CrossRef]
- Pozzi, C.; Pontani, M.; Beolchi, A.; Fantino, E. Optimization, guidance, and control of low-thrust transfers from the Lunar Gateway to low lunar orbit. Acta Astronaut. 2024, 222, 39–51. [Google Scholar] [CrossRef]
- Lee, D.E.; Whitley, R.J.; Acton, C. Sample Deep Space Gateway Orbit. 2018. Available online: https://naif.jpl.nasa.gov/pub/naif/misc/MORE_PROJECTS/DSG/ (accessed on 12 January 2024).
- Zimovan-Spreen, E.M.; Davis, D.C.; Howell, K.C. Recovery Traejctories for Inadvertent Departures from an NRHO. In Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting 2021, Virtual, 1–4 February 2021. number AAS 21-345. [Google Scholar]
- Alvarado, K.I.; Singh, S.K. Exploration and Maintenance of Homeomorphic Orbit Revs in the Elliptic Restricted Three-Body Problem. Aerospace 2024, 11, 407. [Google Scholar] [CrossRef]
- Pontani, M.; Conway, B.A. Optimal Finite-Thrust Rendezvous Trajectories Found via Particle Swarm Algorithm. J. Spacecr. Rocket. 2013, 50, 1222–1234. [Google Scholar] [CrossRef]
- Bevilacqua, R.; Lovell, T.A. Analytical guidance for spacecraft relative motion under constant thrust using relative orbit elements. Acta Astronaut. 2014, 102, 47–61. [Google Scholar] [CrossRef]
- Gurfil, P. Relative Motion between Elliptic Orbits: Generalized Boundedness Conditions and Optimal Formationkeeping. J. Guid. Control. Dyn. 2005, 28, 761–767. [Google Scholar] [CrossRef]
- Lopez, I.; Mclnnes, C.R. Autonomous rendezvous using artificial potential function guidance. J. Guid. Control. Dyn. 1995, 18, 237–241. [Google Scholar] [CrossRef]
- Kluever, C.A. Feedback Control for Spacecraft Rendezvous and Docking. J. Guid. Control. Dyn. 1999, 22, 609–611. [Google Scholar] [CrossRef]
- Karlgaard, C.D. Robust Rendezvous Navigation in Elliptical Orbit. J. Guid. Control. Dyn. 2006, 29, 495–499. [Google Scholar] [CrossRef]
- Santoro, R.; Pontani, M. Orbit acquisition, rendezvous, and docking with a noncooperative capsule in a Mars sample return mission. Acta Astronaut. 2023, 211, 950–962. [Google Scholar] [CrossRef]
- Anand, N.; Kumar, S.R. Nonsingular Finite-Time Convergent Control for Spacecraft Rendezvous and Docking. In Proceedings of the 22nd IFAC World Congress, Yokohama, Japan, 9–14 July 2023; Volume 56, pp. 2007–2012. [Google Scholar] [CrossRef]
- Capello, E.; Punta, E.; Dabbene, F.; Guglieri, G.; Tempo, R. Sliding-Mode Control Strategies for Rendezvous and Docking Maneuvers. J. Guid. Control. Dyn. 2017, 40, 1481–1487. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, J.; Wang, H. Sliding mode control for autonomous spacecraft rendezvous with collision avoidance. Acta Astronaut. 2018, 151, 743–751. [Google Scholar] [CrossRef]
- Lee, D.E. White Paper: Gateway Destination Orbit Model: A Continuous 15 Year NRHO Reference Trajectory; Technical report; NASA: Washington, DC, USA, 2019.
- Davis, D.; Bhatt, S.; Howell, K.; Jang, J.W.; Whitley, R.; Clark, F.; Guzzetti, D.; Zimovan, E.; Barton, G. Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits. In Proceedings of the AAS/AIAA Space Flight Mechanics Meeting 2017, San Antonio, TX, USA, 5–9 February 2017. [Google Scholar]
- Davis, D.C.; Phillips, S.M.; Howell, K.C.; Vutukuri, S.; McCarthy, B.P. Stationkeeping and transfer trajectory design for spacecraft in cislunar space. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference 2017, Stevenson, WA, USA, 20–24 August 2017; Volume 8. [Google Scholar]
- Li, S.; Lucey, P.G.; Milliken, R.E.; Hayne, P.O.; Fisher, E.; Williams, J.P.; Hurley, D.M.; Elphic, R.C. Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. USA 2018, 115, 8907–8912. [Google Scholar] [CrossRef] [PubMed]
- McGuire, M.L.; McCarty, S.L.; Burke, L.M. Power & Propulsion Element (PPE) Spacecraft Reference Trajectory Document; Glenn Research Center: Cleveland, OH, USA, 2018; Volume PPE-DOC-0079, pp. 4–5. [Google Scholar]
- Kéchichian, J.A. Orbital Relative Motion and Terminal Rendezvous: Analytic and Numerical Methods for Spaceflight Guidance Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 1–17. [Google Scholar] [CrossRef]
- Pontani, M. Advanced Spacecraft Dynamics, 1st ed.; Edizioni Efesto: Rome, Italy, 2023. [Google Scholar]
- Varberg, D.; Purcell, E.; Rigdon, S. Calculus with Differential Equations, 9th ed.; Prentice Hall: Hoboken, NJ, USA, 2006. [Google Scholar]
Desired Final Value | Final Error | |
---|---|---|
5 | 1.421 | |
0 | ||
0 | ||
−1 | ||
0 | ||
0 |
Desired Final Value | Final Error | |
---|---|---|
5 | ||
0 | ||
0 | ||
−1 | ||
0 | ||
0 |
Desired Final Value | |||
---|---|---|---|
5 | |||
0 | |||
0 | |||
−1 | |||
0 | |||
0 |
Desired Final Value | |||
---|---|---|---|
5 | |||
0 | |||
0 | |||
−1 | |||
0 | |||
0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanna, D.; Madonna, D.P.; Pontani, M.; Gasbarri, P. Orbit Rendezvous Maneuvers in Cislunar Space via Nonlinear Hybrid Predictive Control. Dynamics 2024, 4, 609-642. https://doi.org/10.3390/dynamics4030032
Sanna D, Madonna DP, Pontani M, Gasbarri P. Orbit Rendezvous Maneuvers in Cislunar Space via Nonlinear Hybrid Predictive Control. Dynamics. 2024; 4(3):609-642. https://doi.org/10.3390/dynamics4030032
Chicago/Turabian StyleSanna, Dario, David Paolo Madonna, Mauro Pontani, and Paolo Gasbarri. 2024. "Orbit Rendezvous Maneuvers in Cislunar Space via Nonlinear Hybrid Predictive Control" Dynamics 4, no. 3: 609-642. https://doi.org/10.3390/dynamics4030032
APA StyleSanna, D., Madonna, D. P., Pontani, M., & Gasbarri, P. (2024). Orbit Rendezvous Maneuvers in Cislunar Space via Nonlinear Hybrid Predictive Control. Dynamics, 4(3), 609-642. https://doi.org/10.3390/dynamics4030032