Application of Magnetic Separation in Catalyst Reuse Applied in Paracetamol Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Catalysts
2.3. Characterization Techniques
2.4. Photocatalysis
3. Results and Discussion
3.1. Characterization Techniques
3.2. Continuous Process
3.3. pH Influence
3.4. Effect of Flow Rate
3.5. Effect of Catalyst Utilization Cycles
3.6. Photolysis and Adsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.A.; Nazal, M.K.; Sajid, M.; Altahir Suliman, M. Adsorptive Removal of Paracetamol from Aqueous Media: A Review of Adsorbent Materials, Adsorption Mechanisms, Advancements, and Future Perspectives. J. Mol. Liq. 2024, 396, 123976. [Google Scholar] [CrossRef]
- Alobaidi, R.A.K.; Ulucan-Altuntas, K.; Mhemid, R.K.S.; Manav-Demir, N.; Cinar, O. Biodegradation of Emerging Pharmaceuticals from Domestic Wastewater by Membrane Bioreactor: The Effect of Solid Retention Time. Int. J. Environ. Res. Public. Health 2021, 18, 3395. [Google Scholar] [CrossRef] [PubMed]
- Roslan, N.N.; Lau, H.L.H.; Suhaimi, N.A.A.; Shahri, N.N.M.; Verinda, S.B.; Nur, M.; Lim, J.-W.; Usman, A. Recent Advances in Advanced Oxidation Processes for Degrading Pharmaceuticals in Wastewater—A Review. Catalysts 2024, 14, 189. [Google Scholar] [CrossRef]
- Anastas, P.; Warner, J. 12 Principles of Green Chemistry. Available online: https://www.acs.org/content/acs/en/greenchemistry/principles/12-principles-of-green-chemistry.html (accessed on 20 January 2024).
- Borges, M.; García, D.; Hernández, T.; Ruiz-Morales, J.; Esparza, P. Supported Photocatalyst for Removal of Emerging Contaminants from Wastewater in a Continuous Packed-Bed Photoreactor Configuration. Catalysts 2015, 5, 77–87. [Google Scholar] [CrossRef]
- Soltys, L.; Olkhovyy, O.; Tatarchuk, T.; Naushad, M. Green Synthesis of Metal and Metal Oxide Nanoparticles: Principles of Green Chemistry and Raw Materials. Magnetochemistry 2021, 7, 145. [Google Scholar] [CrossRef]
- Wei, X.; Naraginti, S.; Chen, P.; Li, J.; Yang, X.; Li, B. Visible Light-Driven Photocatalytic Degradation of Tetracycline Using p-n Heterostructured Cr2O3/ZrO2 Nanocomposite. Water 2023, 15, 3702. [Google Scholar] [CrossRef]
- Savun-Hekimoğlu, B.; Eren, Z.; Ince, N.H. Photocatalytic Destruction of Caffeine on Sepiolite-Supported TiO2 Nanocomposite. Sustainability 2020, 12, 10314. [Google Scholar] [CrossRef]
- Amini, M.; Hosseini, S.M.P.; Chaibakhsh, N. High-Performance NiO@Fe3O4 Magnetic Core–Shell Nanocomposite for Catalytic Ozonation Degradation of Pharmaceutical Pollution. Environ. Sci. Pollut. Res. 2023, 30, 98063–98075. [Google Scholar] [CrossRef] [PubMed]
- Masunga, N.; Mamba, B.B.; Kefeni, K.K. Magnetically Separable Samarium Doped Copper Ferrite-Graphitic Carbon Nitride Nanocomposite for Photodegradation of Dyes and Pharmaceuticals under Visible Light Irradiation. J. Water Process Eng. 2022, 48, 102898. [Google Scholar] [CrossRef]
- Malefane, M.E.; Feleni, U.; Kuvarega, A.T. Cobalt (II/III) Oxide and Tungsten (VI) Oxide p-n Heterojunction Photocatalyst for Photodegradation of Diclofenac Sodium under Visible Light. J. Environ. Chem. Eng. 2020, 8, 103560. [Google Scholar] [CrossRef]
- Alvarado-Rolon, O.; Natividad, R.; Ramírez-García, J.; Orozco-Velazco, J.; Hernandez-Servin, J.A.; Ramírez-Serrano, A. Kinetic Modelling of Paracetamol Degradation by Photocatalysis: Incorporating the Competition for Photons by the Organic Molecule and the Photocatalyst. J. Photochem. Photobiol. A Chem. 2021, 412, 113252. [Google Scholar] [CrossRef]
- Rossi, S.; Herbrik, F.; Resta, S.; Puglisi, A. Supported Eosin Y as a Photocatalyst for C-H Arylation of Furan in Batch and Flow. Molecules 2022, 27, 5096. [Google Scholar] [CrossRef] [PubMed]
- Nour, M.M.; Tony, M.A. The Environmental Oxidation of Acetaminophen in Aqueous Media as an Emerging Pharmaceutical Pollutant Using a Chitosan Waste-Based Magnetite Nanocomposite. Resources 2024, 13, 47. [Google Scholar] [CrossRef]
- Çako, E.; Gunasekaran, K.D.; Rajendran, S.; Zielińska-Jurek, A. Recent Advances on Magnetic Carbon-Related Materials in Advanced Oxidation Processes of Emerging Pollutants Degradation. Water Resour. Ind. 2024, 31, 100241. [Google Scholar] [CrossRef]
- Hermosilla, D.; Han, C.; Nadagouda, M.N.; Machala, L.; Gascó, A.; Campo, P.; Dionysiou, D.D. Environmentally Friendly Synthesized and Magnetically Recoverable Designed Ferrite Photo-Catalysts for Wastewater Treatment Applications. J. Hazard. Mater. 2020, 381, 121200. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.R.P.; Ribas, L.S.; Napoli, J.S.; Abreu, E.; Diaz de Tuesta, J.L.; Gomes, H.T.; Tusset, A.M.; Lenzi, G.G. Green Magnetic Nanoparticles CoFe2O4@Nb5O2 Applied in Paracetamol Removal. Magnetochemistry 2023, 9, 200. [Google Scholar] [CrossRef]
- Ibrahim, I.; Belessiotis, G.V.; Arfanis, M.K.; Athanasekou, C.; Philippopoulos, A.I.; Mitsopoulou, C.A.; Romanos, G.E.; Falaras, P. Surfactant Effects on the Synthesis of Redox Bifunctional V2O5 Photocatalysts. Materials 2020, 13, 4665. [Google Scholar] [CrossRef]
- Oliveira, M.; Santos, V.G.; Carvalho, L.S.; Ruiz, D.; Silva Barbosa, I.A.; Das Virgens, C.F.; Martins, A.R. Adsorbents Obtained from Black Liquor Residues: Synthesis, Characterization, and Evaluation in the Removal of Textile Dyes. Sci. Plena 2021, 16, 12. [Google Scholar] [CrossRef]
- Senthil, V.P.; Gajendiran, J.; Raj, S.G.; Shanmugavel, T.; Ramesh Kumar, G.; Parthasaradhi Reddy, C. Study of Structural and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanostructures. Chem. Phys. Lett. 2018, 695, 19–23. [Google Scholar] [CrossRef]
- El-Okr, M.M.; Salem, M.A.; Salim, M.S.; El-Okr, R.M.; Ashoush, M.; Talaat, H.M. Synthesis of Cobalt Ferrite Nano-Particles and Their Magnetic Characterization. J. Magn. Magn. Mater. 2011, 323, 920–926. [Google Scholar] [CrossRef]
- Binjhade, R.; Mondal, R.; Mondal, S. Continuous Photocatalytic Reactor: Critical Review on the Design and Performance. J. Environ. Chem. Eng. 2022, 10, 107746. [Google Scholar] [CrossRef]
- Sajid, M.; Bari, S.; Saif Ur Rehman, M.; Ashfaq, M.; Guoliang, Y.; Mustafa, G. Adsorption Characteristics of Paracetamol Removal onto Activated Carbon Prepared from Cannabis Sativum Hemp. Alex. Eng. J. 2022, 61, 7203–7212. [Google Scholar] [CrossRef]
- Fuziki, M.E.K.; Brackmann, R.; Dias, D.T.; Tusset, A.M.; Specchia, S.; Lenzi, G.G. Effects of Synthesis Parameters on the Properties and Photocatalytic Activity of the Magnetic Catalyst TiO2/CoFe2O4 Applied to Selenium Photoreduction. J. Water Process Eng. 2021, 42, 102163. [Google Scholar] [CrossRef]
- Yang, L.; Yu, L.E.; Ray, M.B. Degradation of Paracetamol in Aqueous Solutions by TiO2 Photocatalysis. Water Res. 2008, 42, 3480–3488. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Q.; Li, X.; Ling, L.; Zhou, Y. Efficient Oxidation of Paracetamol Triggered by Molecular-Oxygen Activation at Β-Cyclodextrin-Modified Titanate Nanotubes. Chem. Asian J. 2022, 17, e202200352. [Google Scholar] [CrossRef]
- United Nations Development Programme the Sdgs in Action. Available online: https://www.undp.org/sustainable-development-goals?gclid=Cj0KCQjwnrmlBhDHARIsADJ5b_njdNkJH46XlfGzeft_s8lwrll8WsqfeBfcvkkX4xuHFeYD0LKDz64aAhUiEALw_wcB (accessed on 12 July 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.R.P.; Abreu, E.; Fuziki, M.E.K.; Paula, E.T.d.; Fidelis, M.Z.; Brackmann, R.; Tusset, A.M.; Alves, O.C.; Lenzi, G.G. Application of Magnetic Separation in Catalyst Reuse Applied in Paracetamol Degradation. Magnetism 2024, 4, 240-251. https://doi.org/10.3390/magnetism4030016
Oliveira JRP, Abreu E, Fuziki MEK, Paula ETd, Fidelis MZ, Brackmann R, Tusset AM, Alves OC, Lenzi GG. Application of Magnetic Separation in Catalyst Reuse Applied in Paracetamol Degradation. Magnetism. 2024; 4(3):240-251. https://doi.org/10.3390/magnetism4030016
Chicago/Turabian StyleOliveira, Jessica R. P., Eduardo Abreu, Maria E. K. Fuziki, Elaine T. de Paula, Michel Z. Fidelis, Rodrigo Brackmann, Angelo M. Tusset, Odivaldo C. Alves, and Giane G. Lenzi. 2024. "Application of Magnetic Separation in Catalyst Reuse Applied in Paracetamol Degradation" Magnetism 4, no. 3: 240-251. https://doi.org/10.3390/magnetism4030016
APA StyleOliveira, J. R. P., Abreu, E., Fuziki, M. E. K., Paula, E. T. d., Fidelis, M. Z., Brackmann, R., Tusset, A. M., Alves, O. C., & Lenzi, G. G. (2024). Application of Magnetic Separation in Catalyst Reuse Applied in Paracetamol Degradation. Magnetism, 4(3), 240-251. https://doi.org/10.3390/magnetism4030016