Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review
Abstract
:1. Introduction
2. Method Principles and Parameters Affecting Bioactive Compound Extraction
2.1. PEF Apparatus
2.2. Solvent and Sample Characteristics
2.3. Electric Field Strength
2.4. Temperature and Time of PEF Extraction
3. Applications of PEF in Food Waste
3.1. Fruit Waste
3.1.1. Grapes
3.1.2. Citrus Fruits
3.1.3. Olives
3.1.4. Blueberry
3.1.5. Prunus Fruits
3.1.6. Quince
3.1.7. Papaya
3.1.8. Mango
3.1.9. Pomegranate
3.1.10. Custard Apple
3.1.11. Jackfruit
3.1.12. White Mulberry
3.2. Vegetables
3.2.1. Tomato
3.2.2. Potato
3.2.3. Carrot
3.2.4. Corn
3.2.5. Onion
3.2.6. Asparagus
3.2.7. Chicory
3.3. Other
3.3.1. Coffee and Cocoa
3.3.2. Rapeseed
3.3.3. Drumstick Tree
3.3.4. Flaxseed
3.3.5. Sage
3.3.6. Rosemary and Thyme
3.4. Seafood
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ebrahimi, P.; Lante, A. Environmentally Friendly Techniques for the Recovery of Polyphenols from Food By-Products and Their Impact on Polyphenol Oxidase: A Critical Review. Appl. Sci. 2022, 12, 1923. [Google Scholar] [CrossRef]
- Poojary, M.M.; Roohinejad, S.; Barba, F.J.; Koubaa, M.; Puértolas, E.; Jambrak, A.R.; Greiner, R.; Oey, I. Application of Pulsed Electric Field Treatment for Food Waste Recovery Operations. In Handbook of Electroporation; Miklavčič, D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 2573–2590. ISBN 978-3-319-32885-0. [Google Scholar]
- Velusamy, M.; Rajan, A.; Radhakrishnan, M. Valorisation of Food Processing Wastes Using PEF and Its Economic Advances—Recent Update. Int. J. Food Sci. Technol. 2023, 58, 2021–2041. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Qureshi, M.I.; Khan, N.; Ahmad, M.H.; Liu, Z.-W.; Aadil, R.M. Effective Valorization of Food Wastes and By-Products through Pulsed Electric Field: A Systematic Review. J. Food Process Eng. 2021, 44, e13629. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Mishra, S.; Mohanty, P.; Singh, P.K.; Srivastava, R.K.; Pattnaik, R.; Adhya, T.K.; Das, T.; Lenka, B.; Gupta, V.K.; et al. Food and Fruit Waste Valorisation for Pectin Recovery: Recent Process Technologies and Future Prospects. Int. J. Biol. Macromol. 2023, 235, 123929. [Google Scholar] [CrossRef] [PubMed]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef]
- Hao, X.; Wang, X.; Liu, R.; Li, S.; van Loosdrecht, M.C.M.; Jiang, H. Environmental Impacts of Resource Recovery from Wastewater Treatment Plants. Water Res. 2019, 160, 268–277. [Google Scholar] [CrossRef]
- Tongkham, N.; Juntasalay, B.; Lasunon, P.; Sengkhamparn, N. Dragon Fruit Peel Pectin: Microwave-Assisted Extraction and Fuzzy Assessment. Agric. Nat. Resour. 2017, 51, 262–267. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef]
- Martirosyan, D.; Miller, E. Bioactive Compounds: The Key to Functional Foods. Bioact. Compd. Health Dis. 2018, 1, 36. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, M.; Bhandari, B.; Gao, Z. Novel Technologies in Utilization of Byproducts of Animal Food Processing: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3420–3430. [Google Scholar] [CrossRef]
- Gerasopoulos, K.; Petrotos, K. 15—Utilization of Olive Mill Waste Waters to Produce Bioactive Animal Feed. In Membrane Engineering in the Circular Economy; Iulianelli, A., Cassano, A., Conidi, C., Petrotos, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 393–412. ISBN 978-0-323-85253-1. [Google Scholar]
- Sharmila, V.G.; Kavitha, S.; Obulisamy, P.K.; Banu, J.R. Chapter 8—Production of Fine Chemicals from Food Wastes. In Food Waste to Valuable Resources; Banu, J.R., Kumar, G., Gunasekaran, M., Kavitha, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 163–188. ISBN 978-0-12-818353-3. [Google Scholar]
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef] [PubMed]
- Lomartire, S.; Gonçalves, A.M.M. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar. Drugs 2022, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Antioxidants: Reviewing the Chemistry, Food Applications, Legislation and Role as Preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef]
- Dias, C.; Fonseca, A.M.A.; Amaro, A.L.; Vilas-Boas, A.A.; Oliveira, A.; Santos, S.A.O.; Silvestre, A.J.D.; Rocha, S.M.; Isidoro, N.; Pintado, M. Natural-Based Antioxidant Extracts as Potential Mitigators of Fruit Browning. Antioxidants 2020, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Boas, A.A.; Pintado, M.; Oliveira, A.L.S. Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods 2021, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- Gowman, A.C.; Picard, M.C.; Lim, L.-T.; Misra, M.; Mohanty, A.K. Fruit Waste Valorization for Biodegradable Biocomposite Applications: A Review. BioResources 2019, 14, 10047–10092. [Google Scholar] [CrossRef]
- Sogut, E.; Cakmak, H. Utilization of Carrot (Daucus carota L.) Fiber as a Filler for Chitosan Based Films. Food Hydrocoll. 2020, 106, 105861. [Google Scholar] [CrossRef]
- Tsang, Y.F.; Kumar, V.; Samadar, P.; Yang, Y.; Lee, J.; Ok, Y.S.; Song, H.; Kim, K.-H.; Kwon, E.E.; Jeon, Y.J. Production of Bioplastic through Food Waste Valorization. Environ. Int. 2019, 127, 625–644. [Google Scholar] [CrossRef]
- Kalak, T. Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. Energies 2023, 16, 1783. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, J.; Qu, Y.; Chen, H.; Zhou, X.; Hong, H.; Sun, H.; Lin, H.; Deng, W.; Wu, F. Using Simple and Easy Water Quality Parameters to Predict Trihalomethane Occurrence in Tap Water. Chemosphere 2022, 286, 131586. [Google Scholar] [CrossRef]
- Rifna, E.J.; Misra, N.N.; Dwivedi, M. Recent Advances in Extraction Technologies for Recovery of Bioactive Compounds Derived from Fruit and Vegetable Waste Peels: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 719–752. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.-G.; He, L.; Xi, J. High Intensity Pulsed Electric Field as an Innovative Technique for Extraction of Bioactive Compounds—A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2877–2888. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A Review of Sustainable and Intensified Techniques for Extraction of Food and Natural Products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green Alternative Methods for the Extraction of Antioxidant Bioactive Compounds from Winery Wastes and By-Products: A Review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Pojić, M.; Mišan, A.; Tiwari, B. Eco-Innovative Technologies for Extraction of Proteins for Human Consumption from Renewable Protein Sources of Plant Origin. Trends Food Sci. Technol. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Dhua, S.; Kumar, K.; Sharanagat, V.S.; Nema, P.K. Bioactive Compounds and Its Optimization from Food Waste: Review on Novel Extraction Techniques. Nutr. Food Sci. 2022, 52, 1270–1288. [Google Scholar] [CrossRef]
- Wang, H.; Ding, J.; Ren, N. Recent Advances in Microwave-Assisted Extraction of Trace Organic Pollutants from Food and Environmental Samples. TrAC Trends Anal. Chem. 2016, 75, 197–208. [Google Scholar] [CrossRef]
- Moradi, N.; Rahimi, M. Effect of Simultaneous Ultrasound/Pulsed Electric Field Pretreatments on the Oil Extraction from Sunflower Seeds. Sep. Sci. Technol. 2018, 53, 2088–2099. [Google Scholar] [CrossRef]
- Damar, I.; Yilmaz, E. Ultrasound-Assisted Extraction of Phenolic Compounds in Blackthorn (Prunus spinosa L.): Characterization, Antioxidant Activity and Optimization by Response Surface Methodology. J. Food Meas. Charact. 2023, 17, 1467–1479. [Google Scholar] [CrossRef]
- Wei, M.-C.; Xiao, J.; Yang, Y.-C. Extraction of α-Humulene-Enriched Oil from Clove Using Ultrasound-Assisted Supercritical Carbon Dioxide Extraction and Studies of Its Fictitious Solubility. Food Chem. 2016, 210, 172–181. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, L.C.; Bitencourt, R.G.; dos Santos, P.; de Tarso Vieira e Rosa, P.; Martínez, J. Solubility of Passion Fruit (Passiflora edulis Sims) Seed Oil in Supercritical CO2. Fluid Phase Equilib. 2019, 493, 174–180. [Google Scholar] [CrossRef]
- Kang, J.-H.; Kim, S.; Moon, B. Optimization by Response Surface Methodology of Lutein Recovery from Paprika Leaves Using Accelerated Solvent Extraction. Food Chem. 2016, 205, 140–145. [Google Scholar] [CrossRef]
- Wu, K.; Ju, T.; Deng, Y.; Xi, J. Mechanochemical Assisted Extraction: A Novel, Efficient, Eco-Friendly Technology. Trends Food Sci. Technol. 2017, 66, 166–175. [Google Scholar] [CrossRef]
- Xi, J.; Yan, L. Optimization of Pressure-Enhanced Solid-Liquid Extraction of Flavonoids from Flos Sophorae and Evaluation of Their Antioxidant Activity. Sep. Purif. Technol. 2017, 175, 170–176. [Google Scholar] [CrossRef]
- Xi, J.; Li, Z.; Fan, Y. Recent Advances in Continuous Extraction of Bioactive Ingredients from Food-Processing Wastes by Pulsed Electric Fields. Crit. Rev. Food Sci. Nutr. 2021, 61, 1738–1750. [Google Scholar] [CrossRef] [PubMed]
- Cilla, A.; Bosch, L.; Barberá, R.; Alegría, A. Effect of Processing on the Bioaccessibility of Bioactive Compounds—A Review Focusing on Carotenoids, Minerals, Ascorbic Acid, Tocopherols and Polyphenols. J. Food Compos. Anal. 2018, 68, 3–15. [Google Scholar] [CrossRef]
- Picart-Palmade, L.; Cunault, C.; Chevalier-Lucia, D.; Belleville, M.-P.; Marchesseau, S. Potentialities and Limits of Some Non-Thermal Technologies to Improve Sustainability of Food Processing. Front. Nutr. 2019, 5, 00130. [Google Scholar] [CrossRef]
- Puértolas, E.; Barba, F.J. Electrotechnologies Applied to Valorization of By-Products from Food Industry: Main Findings, Energy and Economic Cost of Their Industrialization. Food Bioprod. Process. 2016, 100, 172–184. [Google Scholar] [CrossRef]
- Geow, C.H.; Tan, M.C.; Yeap, S.P.; Chin, N.L. A Review on Extraction Techniques and Its Future Applications in Industry. Eur. J. Lipid Sci. Technol. 2021, 123, 2000302. [Google Scholar] [CrossRef]
- Mohamed, M.E.A.; Amer Eiss, A.H. Pulsed Electric Fields for Food Processing Technology. In Structure and Function of Food Engineering; Amer Eissa, A., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0695-1. [Google Scholar]
- Raso, J.; Frey, W.; Ferrari, G.; Pataro, G.; Knorr, D.; Teissie, J.; Miklavčič, D. Recommendations Guidelines on the Key Information to Be Reported in Studies of Application of PEF Technology in Food and Biotechnological Processes. Innov. Food Sci. Emerg. Technol. 2016, 37, 312–321. [Google Scholar] [CrossRef]
- El Kantar, S.; Boussetta, N.; Lebovka, N.; Foucart, F.; Rajha, H.N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Pulsed Electric Field Treatment of Citrus Fruits: Improvement of Juice and Polyphenols Extraction. Innov. Food Sci. Emerg. Technol. 2018, 46, 153–161. [Google Scholar] [CrossRef]
- Liu, Z.; Esveld, E.; Vincken, J.-P.; Bruins, M.E. Pulsed Electric Field as an Alternative Pre-Treatment for Drying to Enhance Polyphenol Extraction from Fresh Tea Leaves. Food Bioprocess Technol. 2019, 12, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Bocker, R.; Silva, E.K. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem. X 2022, 15, 100398. [Google Scholar] [CrossRef]
- Puértolas, E.; Koubaa, M.; Barba, F.J. An Overview of the Impact of Electrotechnologies for the Recovery of Oil and High-Value Compounds from Vegetable Oil Industry: Energy and Economic Cost Implications. Food Res. Int. 2016, 80, 19–26. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Shabbir, M.A.; Aslam Maan, A.; Khan, M.K.I.; Nadeem, M.; Khalil, A.A.; Din, A.; Aadil, R.M. An Inclusive Overview of Advanced Thermal and Nonthermal Extraction Techniques for Bioactive Compounds in Food and Food-Related Matrices. Food Rev. Int. 2022, 38, 1166–1196. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef]
- Efthymiopoulos, I.; Hellier, P.; Ladommatos, N.; Russo-Profili, A.; Eveleigh, A.; Aliev, A.; Kay, A.; Mills-Lamptey, B. Influence of Solvent Selection and Extraction Temperature on Yield and Composition of Lipids Extracted from Spent Coffee Grounds. Ind. Crops Prod. 2018, 119, 49–56. [Google Scholar] [CrossRef]
- Lasekan, O.; Ng, S.; Azeez, S.; Shittu, R.; Teoh, L.; Gholivand, S. Effect of Pulsed Electric Field Processing on Flavor and Color of Liquid Foods†. J. Food Process. Preserv. 2017, 41, e12940. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The Application of PEF Technology in Food Processing and Human Nutrition. J. Food Sci. Technol. 2021, 58, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Vaessen, E.M.J.; Timmermans, R.A.H.; Tempelaars, M.H.; Schutyser, M.a.I.; den Besten, H.M.W. Reversibility of Membrane Permeabilization upon Pulsed Electric Field Treatment in Lactobacillus Plantarum WCFS1. Sci. Rep. 2019, 9, 19990. [Google Scholar] [CrossRef] [PubMed]
- Morales-de la Peña, M.; Welti-Chanes, J.; Martín-Belloso, O. Novel Technologies to Improve Food Safety and Quality. Curr. Opin. Food Sci. 2019, 30, 1–7. [Google Scholar] [CrossRef]
- Saletnik, B.; Zaguła, G.; Saletnik, A.; Bajcar, M.; Słysz, E.; Puchalski, C. Effect of Magnetic and Electrical Fields on Yield, Shelf Life and Quality of Fruits. Appl. Sci. 2022, 12, 3183. [Google Scholar] [CrossRef]
- Fauster, T.; Schlossnikl, D.; Rath, F.; Ostermeier, R.; Teufel, F.; Toepfl, S.; Jaeger, H. Impact of Pulsed Electric Field (PEF) Pretreatment on Process Performance of Industrial French Fries Production. J. Food Eng. 2018, 235, 16–22. [Google Scholar] [CrossRef]
- Golberg, A.; Sack, M.; Teissie, J.; Pataro, G.; Pliquett, U.; Saulis, G.; Stefan, T.; Miklavcic, D.; Vorobiev, E.; Frey, W. Energy-Efficient Biomass Processing with Pulsed Electric Fields for Bioeconomy and Sustainable Development. Biotechnol. Biofuels 2016, 9, 94. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Sun, D.-W.; Zhu, Z. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 2285–2298. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Y.; He, H.; Sun, Z.; Li, A. Effective Aluminum Extraction Using Pressure Leaching of Bauxite Reaction Residue from Coagulant Industry and Leaching Kinetics Study. J. Environ. Chem. Eng. 2021, 9, 104770. [Google Scholar] [CrossRef]
- Zderic, A.; Zondervan, E. Polyphenol Extraction from Fresh Tea Leaves by Pulsed Electric Field: A Study of Mechanisms. Chem. Eng. Res. Des. 2016, 109, 586–592. [Google Scholar] [CrossRef]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of Anthocyanins from Grape By-Products Assisted by Ultrasonics, High Hydrostatic Pressure or Pulsed Electric Fields: A Comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Barbosa-Cánovas, G.V. Assisted Extraction of Bioactive Compounds from Plum and Grape Peels by Ultrasonics and Pulsed Electric Fields. J. Food Eng. 2015, 166, 268–275. [Google Scholar] [CrossRef]
- Ntourtoglou, G.; Drosou, F.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Dourtoglou, V.G.; Elhakem, A.; Sami, R.; Ashour, A.A.; Shafie, A.; et al. Combination of Pulsed Electric Field and Ultrasound in the Extraction of Polyphenols and Volatile Compounds from Grape Stems. Appl. Sci. 2022, 12, 6219. [Google Scholar] [CrossRef]
- Carpentieri, S.; Ferrari, G.; Pataro, G. Optimization of Pulsed Electric Fields-Assisted Extraction of Phenolic Compounds from White Grape Pomace Using Response Surface Methodology. Front. Sustain. Food Syst. 2022, 6, 854968. [Google Scholar] [CrossRef]
- Ćurko, N.; Lukić, K.; Tušek, A.J.; Balbino, S.; Vukušić Pavičić, T.; Tomašević, M.; Redovniković, I.R.; Ganić, K.K. Effect of Cold Pressing and Supercritical CO2 Extraction Assisted with Pulsed Electric Fields Pretreatment on Grape Seed Oil Yield, Composition and Antioxidant Characteristics. LWT 2023, 184, 114974. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Moreno, A.; Barba, F.J. A Preliminary Multistep Combination of Pulsed Electric Fields and Supercritical Fluid Extraction to Recover Bioactive Glycosylated and Lipidic Compounds from Exhausted Grape Marc. LWT 2023, 180, 114725. [Google Scholar] [CrossRef]
- Carpentieri, S.; Ferrari, G.; Pataro, G. Pulsed Electric Fields-Assisted Extraction of Valuable Compounds from Red Grape Pomace: Process Optimization Using Response Surface Methodology. Front. Nutr. 2023, 10, 1158019. [Google Scholar] [CrossRef]
- Meini, M.-R.; Cabezudo, I.; Boschetti, C.E.; Romanini, D. Recovery of Phenolic Antioxidants from Syrah Grape Pomace through the Optimization of an Enzymatic Extraction Process. Food Chem. 2019, 283, 257–264. [Google Scholar] [CrossRef]
- Pintać, D.; Majkić, T.; Torović, L.; Orčić, D.; Beara, I.; Simin, N.; Mimica–Dukić, N.; Lesjak, M. Solvent Selection for Efficient Extraction of Bioactive Compounds from Grape Pomace. Ind. Crops Prod. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.L.; Teles, A.S.C.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Phenolic Compounds Recovery from Grape Skin Using Conventional and Non-Conventional Extraction Methods. Ind. Crops Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Luengo, E.; Álvarez, I.; Raso, J. Improving the Pressing Extraction of Polyphenols of Orange Peel by Pulsed Electric Fields. Innov. Food Sci. Emerg. Technol. 2013, 17, 79–84. [Google Scholar] [CrossRef]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.-S.; Dangles, O.; Chemat, F. Ultrasound-Assisted Extraction of Polyphenols (Flavanone Glycosides) from Orange (Citrus sinensis L.) Peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability 2022, 14, 13926. [Google Scholar] [CrossRef]
- Afifi, S.M.; Gök, R.; Eikenberg, I.; Krygier, D.; Rottmann, E.; Stübler, A.-S.; Aganovic, K.; Hillebrand, S.; Esatbeyoglu, T. Comparative Flavonoid Profile of Orange (Citrus sinensis) Flavedo and Albedo Extracted by Conventional and Emerging Techniques Using UPLC-IMS-MS, Chemometrics and Antioxidant Effects. Front. Nutr. 2023, 10, 1158473. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Athanasiadis, V.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Valorization of Waste Orange Peels: Aqueous Antioxidant Polyphenol Extraction as Affected by Organic Acid Addition. Beverages 2022, 8, 71. [Google Scholar] [CrossRef]
- Razola-Díaz, M.d.C.; Guerra-Hernández, E.J.; Rodríguez-Pérez, C.; Gómez-Caravaca, A.M.; García-Villanova, B.; Verardo, V. Optimization of Ultrasound-Assisted Extraction via Sonotrode of Phenolic Compounds from Orange By-Products. Foods 2021, 10, 1120. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Maróstica, M.R.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical Water Extraction of Flavanones from Defatted Orange Peel. J. Supercrit. Fluids 2018, 138, 7–16. [Google Scholar] [CrossRef]
- Peiró, S.; Luengo, E.; Segovia, F.; Raso, J.; Almajano, M.P. Improving Polyphenol Extraction from Lemon Residues by Pulsed Electric Fields. Waste Biomass Valorization 2019, 10, 889–897. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Kim, H.-J.; Ko, M.-J.; Chung, M.-S. Recovery of Hesperidin and Narirutin from Waste Citrus Unshiu Peel Using Subcritical Water Extraction Aided by Pulsed Electric Field Treatment. Food Sci. Biotechnol. 2021, 30, 217–226. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Barba, F.J.; Parniakov, O.; Galanakis, C.M.; Lebovka, N.; Grimi, N.; Vorobiev, E. High Voltage Electrical Discharges, Pulsed Electric Field, and Ultrasound Assisted Extraction of Protein and Phenolic Compounds from Olive Kernel. Food Bioprocess Technol. 2015, 8, 885–894. [Google Scholar] [CrossRef]
- Ohshima, T.; Tanino, T.; Guionet, A.; Takahashi, K.; Takaki, K. Mechanism of Pulsed Electric Field Enzyme Activity Change and Pulsed Discharge Permeabilization of Agricultural Products. Jpn. J. Appl. Phys. 2021, 60, 060501. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Bozinou, E.; Ntourtoglou, G.; Batra, G.; Athanasiadis, V.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Use of Pulsed Electric Field as a Low-Temperature and High-Performance “Green” Extraction Technique for the Recovery of High Added Value Compounds from Olive Leaves. Beverages 2021, 7, 45. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Athanasiadis, V.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Optimization of Pulsed Electric Field as Standalone “Green” Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves. Antioxidants 2021, 10, 1554. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Gullón, B.; Romero, I.; Ruiz, E.; Brnčić, M.; Žlabur, J.Š.; Castro, E. Optimization of Ultrasound-Assisted Extraction of Biomass from Olive Trees Using Response Surface Methodology. Ultrason. Sonochem. 2019, 51, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa, G.S.; Vanga, S.K.; Gariepy, Y.; Raghavan, V. Comparison of Microwave, Ultrasonic and Conventional Techniques for Extraction of Bioactive Compounds from Olive Leaves (Olea europaea L.). Innov. Food Sci. Emerg. Technol. 2019, 58, 102234. [Google Scholar] [CrossRef]
- Stamatopoulos, K.; Katsoyannos, E.; Chatzilazarou, A. Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction. Antioxidants 2014, 3, 229–244. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viškelis, P.; Ferrari, G. Application of Pulsed Electric Field in the Production of Juice and Extraction of Bioactive Compounds from Blueberry Fruits and Their By-Products. J. Food Sci. Technol. 2015, 52, 5898–5905. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, X.; Huang, H. Effects of Pulsed Electric Fields on Anthocyanin Extraction Yield of Blueberry Processing By-Products. J. Food Process. Preserv. 2015, 39, 1898–1904. [Google Scholar] [CrossRef]
- Pataro, G.; Bobinaitė, R.; Bobinas, Č.; Šatkauskas, S.; Raudonis, R.; Visockis, M.; Ferrari, G.; Viškelis, P. Improving the Extraction of Juice and Anthocyanins from Blueberry Fruits and Their By-Products by Application of Pulsed Electric Fields. Food Bioprocess Technol. 2017, 10, 1595–1605. [Google Scholar] [CrossRef]
- Pataro, G.; Carullo, D.; Bobinaite, R.; Donsì, G.; Ferrari, G. Improving the Extraction Yield of Juice and Bioactive Compounds from Sweet Cherries and Their By-Products by Pulsed Electric Fields. Chem. Eng. Trans. 2017, 57, 1717–1722. [Google Scholar] [CrossRef]
- Redondo, D.; Venturini, M.E.; Luengo, E.; Raso, J.; Arias, E. Pulsed Electric Fields as a Green Technology for the Extraction of Bioactive Compounds from Thinned Peach By-Products. Innov. Food Sci. Emerg. Technol. 2018, 45, 335–343. [Google Scholar] [CrossRef]
- Plazzotta, S.; Ibarz, R.; Manzocco, L.; Martín-Belloso, O. Modelling the Recovery of Biocompounds from Peach Waste Assisted by Pulsed Electric Fields or Thermal Treatment. J. Food Eng. 2021, 290, 110196. [Google Scholar] [CrossRef]
- Makrygiannis, I.; Athanasiadis, V.; Bozinou, E.; Chatzimitakos, T.; Makris, D.P.; Lalas, S.I. Combined Effects of Deep Eutectic Solvents and Pulsed Electric Field Improve Polyphenol-Rich Extracts from Apricot Kernel Biomass. Biomass 2023, 3, 66–77. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Almond Hull Biomass: Preliminary Characterization and Development of Two Alternative Valorization Routes by Applying Innovative and Sustainable Technologies. Ind. Crops Prod. 2022, 179, 114697. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Kotsou, K.; Palaiogiannis, D.; Lalas, S.I. Optimization of Extraction Parameters for Enhanced Recovery of Bioactive Compounds from Quince Peels Using Response Surface Methodology. Foods 2023, 12, 2099. [Google Scholar] [CrossRef] [PubMed]
- Parniakov, O.; Barba, F.J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Impact of Pulsed Electric Fields and High Voltage Electrical Discharges on Extraction of High-Added Value Compounds from Papaya Peels. Food Res. Int. 2014, 65, 337–343. [Google Scholar] [CrossRef]
- Parniakov, O.; Barba, F.J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Extraction Assisted by Pulsed Electric Energy as a Potential Tool for Green and Sustainable Recovery of Nutritionally Valuable Compounds from Mango Peels. Food Chem. 2016, 192, 842–848. [Google Scholar] [CrossRef]
- Rajha, H.N.; Abi-Khattar, A.-M.; El Kantar, S.; Boussetta, N.; Lebovka, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Comparison of Aqueous Extraction Efficiency and Biological Activities of Polyphenols from Pomegranate Peels Assisted by Infrared, Ultrasound, Pulsed Electric Fields and High-Voltage Electrical Discharges. Innov. Food Sci. Emerg. Technol. 2019, 58, 102212. [Google Scholar] [CrossRef]
- Ahmad Shiekh, K.; Odunayo Olatunde, O.; Zhang, B.; Huda, N.; Benjakul, S. Pulsed Electric Field Assisted Process for Extraction of Bioactive Compounds from Custard Apple (Annona squamosa) Leaves. Food Chem. 2021, 359, 129976. [Google Scholar] [CrossRef]
- Lal, A.M.N.; Prince, M.V.; Kothakota, A.; Pandiselvam, R.; Thirumdas, R.; Mahanti, N.K.; Sreeja, R. Pulsed Electric Field Combined with Microwave-Assisted Extraction of Pectin Polysaccharide from Jackfruit Waste. Innov. Food Sci. Emerg. Technol. 2021, 74, 102844. [Google Scholar] [CrossRef]
- Chaiyana, W.; Sirithunyalug, J.; Somwongin, S.; Punyoyai, C.; Laothaweerungsawat, N.; Marsup, P.; Neimkhum, W.; Yawootti, A. Enhancement of the Antioxidant, Anti-Tyrosinase, and Anti-Hyaluronidase Activity of Morus alba L. Leaf Extract by Pulsed Electric Field Extraction. Molecules 2020, 25, 2212. [Google Scholar] [CrossRef] [PubMed]
- Luengo, E.; Álvarez, I.; Raso, J. Improving Carotenoid Extraction from Tomato Waste by Pulsed Electric Fields. Front. Nutr. 2014, 1, 00012. [Google Scholar] [CrossRef] [PubMed]
- Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of Lycopene from Industrially Derived Tomato Processing By-Products by Pulsed Electric Fields-Assisted Extraction. Innov. Food Sci. Emerg. Technol. 2020, 63, 102369. [Google Scholar] [CrossRef]
- Andreou, V.; Dimopoulos, G.; Dermesonlouoglou, E.; Taoukis, P. Application of Pulsed Electric Fields to Improve Product Yield and Waste Valorization in Industrial Tomato Processing. J. Food Eng. 2020, 270, 109778. [Google Scholar] [CrossRef]
- Kumar, S.; Rawson, A.; Kumar, A.; Ck, S.; Vignesh, S.; Venkatachalapathy, N. Lycopene Extraction from Industrial Tomato Processing Waste Using Emerging Technologies, and Its Application in Enriched Beverage Development. Int. J. Food Sci. Technol. 2023, 58, 2141–2150. [Google Scholar] [CrossRef]
- Giovanoudis, I.; Athanasiadis, V.; Chatzimitakos, T.; Gortzi, O.; Nanos, G.D.; Lalas, S.I. Development of a Cloud Point Extraction Technique Based on Lecithin for the Recovery of Carotenoids from Liquid Tomato Wastewater. Waste 2022, 1, 105–114. [Google Scholar] [CrossRef]
- Romano, R.; Aiello, A.; Pizzolongo, F.; Rispoli, A.; De Luca, L.; Masi, P. Characterisation of Oleoresins Extracted from Tomato Waste by Liquid and Supercritical Carbon Dioxide. Int. J. Food Sci. Technol. 2020, 55, 3334–3342. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Ostojić, J.; Miletić, V.; Djaković, S.; Bosiljkov, T.; Zorić, Z.; Ježek, D.; Rimac Brnčić, S.; Brnčić, M. Application of High Hydrostatic Pressure and Ultrasound-Assisted Extractions as a Novel Approach for Pectin and Polyphenols Recovery from Tomato Peel Waste. Innov. Food Sci. Emerg. Technol. 2020, 64, 102424. [Google Scholar] [CrossRef]
- Grassino, A.N.; Pedisić, S.; Dragović-Uzelac, V.; Karlović, S.; Ježek, D.; Bosiljkov, T. Insight into High-Hydrostatic Pressure Extraction of Polyphenols from Tomato Peel Waste. Plant Foods Hum. Nutr. 2020, 75, 427–433. [Google Scholar] [CrossRef]
- Hossain, M.B.; Aguiló-Aguayo, I.; Lyng, J.G.; Brunton, N.P.; Rai, D.K. Effect of Pulsed Electric Field and Pulsed Light Pre-Treatment on the Extraction of Steroidal Alkaloids from Potato Peels. Innov. Food Sci. Emerg. Technol. 2015, 29, 9–14. [Google Scholar] [CrossRef]
- Frontuto, D.; Carullo, D.; Harrison, S.M.; Brunton, N.P.; Ferrari, G.; Lyng, J.G.; Pataro, G. Optimization of Pulsed Electric Fields-Assisted Extraction of Polyphenols from Potato Peels Using Response Surface Methodology. Food Bioprocess Technol. 2019, 12, 1708–1720. [Google Scholar] [CrossRef]
- Roohinejad, S.; Oey, I.; Everett, D.W.; Niven, B.E. Evaluating the Effectiveness of β-Carotene Extraction from Pulsed Electric Field-Treated Carrot Pomace Using Oil-in-Water Microemulsion. Food Bioprocess Technol. 2014, 7, 3336–3348. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, Z.; Liu, J.; Yu, Y.; Yin, Y.; Lin, S.; Chen, F. Optimized Extraction of Polysaccharides from Corn Silk by Pulsed Electric Field and Response Surface Quadratic Design. J. Sci. Food Agric. 2011, 91, 2201–2209. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Ko, M.-J.; Park, C.-H.; Chung, M.-S. Application of Pulsed Electric Field as a Pre-Treatment for Subcritical Water Extraction of Quercetin from Onion Skin. Foods 2022, 11, 1069. [Google Scholar] [CrossRef] [PubMed]
- Symes, A.; Shavandi, A.; Bekhit, A.E.-D.A. Effects of Ionic Liquids and Pulsed Electric Fields on the Extraction of Antioxidants from Green Asparagus Roots. Int. J. Food Sci. Technol. 2023, 58, 3935–3945. [Google Scholar] [CrossRef]
- Zhu, Z.; Bals, O.; Grimi, N.; Vorobiev, E. Pilot Scale Inulin Extraction from Chicory Roots Assisted by Pulsed Electric Fields. Int. J. Food Sci. Technol. 2012, 47, 1361–1368. [Google Scholar] [CrossRef]
- Loginova, K.V.; Vorobiev, E.; Bals, O.; Lebovka, N.I. Pilot Study of Countercurrent Cold and Mild Heat Extraction of Sugar from Sugar Beets, Assisted by Pulsed Electric Fields. J. Food Eng. 2011, 102, 340–347. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Macías-Garbett, R.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Contreras-Esquivel, J.C.; Chen, W.N.; Melchor-Martínez, E.M.; Parra-Saldívar, R. Combined Pulsed Electric Field and Microwave-Assisted Extraction as a Green Method for the Recovery of Antioxidant Compounds with Electroactive Potential from Coffee Agro-Waste. Plants 2022, 11, 2362. [Google Scholar] [CrossRef]
- Carpentieri, S.; Mazza, L.; Nutrizio, M.; Jambrak, A.R.; Ferrari, G.; Pataro, G. Pulsed Electric Fields- and Ultrasound-assisted Green Extraction of Valuable Compounds from Origanum v ulgare L. and Thymus serpyllum L. Int. J. Food Sci. Technol. 2021, 56, 4834–4842. [Google Scholar] [CrossRef]
- Yu, X.; Gouyo, T.; Grimi, N.; Bals, O.; Vorobiev, E. Pulsed Electric Field Pretreatment of Rapeseed Green Biomass (Stems) to Enhance Pressing and Extractives Recovery. Bioresour. Technol. 2016, 199, 194–201. [Google Scholar] [CrossRef]
- Bozinou, E.; Karageorgou, I.; Batra, G.; Dourtoglou, V.G.; Lalas, S.I. Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages 2019, 5, 8. [Google Scholar] [CrossRef]
- Boussetta, N.; Soichi, E.; Lanoisellé, J.-L.; Vorobiev, E. Valorization of Oilseed Residues: Extraction of Polyphenols from Flaxseed Hulls by Pulsed Electric Fields. Ind. Crops Prod. 2014, 52, 347–353. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Lakka, A.; Palaiogiannis, D.; Pappas, V.M.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Pulsed Electric Field and Salvia officinalis L. Leaves: A Successful Combination for the Extraction of High Value Added Compounds. Foods 2021, 10, 2014. [Google Scholar] [CrossRef] [PubMed]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The Effect of Pulsed Electric Field as a Pre-Treatment Step in Ultrasound Assisted Extraction of Phenolic Compounds from Fresh Rosemary and Thyme by-Products. Innov. Food Sci. Emerg. Technol. 2021, 69, 102644. [Google Scholar] [CrossRef]
- Zhang, Y.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation Study of Carnosic Acid, Carnosol, Rosmarinic Acid, and Rosemary Extract (Rosmarinus officinalis L.) Assessed Using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Collado, M.C.; Barba, F.J. Accelerated Solvent Extraction and Pulsed Electric Fields for Valorization of Rainbow Trout (Oncorhynchus mykiss) and Sole (Dover sole) By-Products: Protein Content, Molecular Weight Distribution and Antioxidant Potential of the Extracts. Mar. Drugs 2021, 19, 207. [Google Scholar] [CrossRef]
- De Aguiar Saldanha Pinheiro, A.C.; Martí-Quijal, F.J.; Barba, F.J.; Benítez-González, A.M.; Meléndez-Martínez, A.J.; Castagnini, J.M.; Tappi, S.; Rocculi, P. Pulsed Electric Fields (PEF) and Accelerated Solvent Extraction (ASE) for Valorization of Red (Aristeus antennatus) and Camarote (Melicertus kerathurus) Shrimp Side Streams: Antioxidant and HPLC Evaluation of the Carotenoid Astaxanthin Recovery. Antioxidants 2023, 12, 406. [Google Scholar] [CrossRef]
Type of By-Product | Target Bioactive | PEF Conditions | Treatment Effect | Reference |
---|---|---|---|---|
Grape skin, stem, seed | Polyphenols, anthocyanins | 3 kV/cm, 30 pulses, 10 kJ/kg, 15 s, 2 Hz | Polyphenols: 75% increase when combined with US Anthocyanins: 77% increase compared to conventional extraction, 88% compared to US, 25% compared to HHP | [65] |
Plum and grape peels | Polyphenols, flavonoids, anthocyanins | I: 25 kV, 6 μs pulse, 10 Hz, flow 290 L/h, 25 mm chamber diameter II: 25 kV, 6 μs pulse, 10 Hz, flow 290 L/h, 7 mm chamber diameter | I: 205% increase in polyphenols, 80% increase in flavonoids, 300% increase in anthocyanins | [66] |
Grape stems | Polyphenols and volatile compounds | 1 kV/cm, 1 ms pulse, 1 Hz, 30 min | PEF combined with US led to TPC 17% increase (methanol 50%), 35% increase (water), volatile compounds 234% increase | [67] |
White grape pomace | Polyphenols, flavonoids | 3.8 kV/cm, 10 kJ/kg | 8% increase in TPC, 31% in flavonoids, 36% increase in antioxidant power compared to control extraction | [68] |
White grape seeds | Polyphenols, tocochromanols, linoleic acid | SC-CO2-assisted PEF: I: 5 kV/cm, 120 Hz, 5 min, flow rate 45 g CO2/min, 45 °C II: 5 kV/cm, 120 Hz, 1 min, flow rate 45 g CO2/min, 45 °C | I: 38% increase in sterols, 31% in trans-resveratrol, 165% in gallic acid | [69] |
Exhausted grape marc | Lipidic and glycosylated compounds | SC-CO2-assisted PEF: 3 kV/cm, 100 kJ/kg, 2 Hz, 100 ms pulse duration, 15 MPa, flow 25 mL/min, 1 h duration | 14% and 28% increase in liquid fraction, 41% and 95% increase in ORAC | [70] |
Red grape pomace | Polyphenols, flavonoids, tannins, anthocyanins | 4.6 kV/cm, 20 kJ/kg, 300 min, ethanol 50% | 8% increase in TPC, 31% in flavonoids, and 36% in FRAP, all compared to the control extraction | [71] |
Orange peels | Polyphenols, flavonoids | 1-3-5-7 kV/cm, 60 μs, | 20%, 129%, 153%, and 159% increase in TPC, 51%, 94%, 148%, and 192% increase in antioxidant capacity | [75] |
Orange peels | Polyphenols, ascorbic acid, carotenoids | 1 kV/cm, 10 s pulse duration, 1000 Hz | PEF increased the yields from all the targeted compounds except for ascorbic acid, which was increased only by US | [77] |
Orange peels | Polymethoxy flavones | 3 kV/cm, 15 kJ/kg, 10 kV, | PEF-assisted high hydrostatic pressure extraction was the optimal condition; 15 out of 57 recognized metabolites were present in significant amounts | [78] |
Lemon peels | Polyphenols | 7 kV/cm, 30 pulses of 3 μs, | 60% increase in TPC, 300% increase in hesperidin and eriocitrin | [82] |
Satsuma mandarin peels | Hesperidin, narrirutin | PEF-assisted subcritical water extraction, 3 kV/cm for 60 and 120 s | At 120 s PEF treatment, 22.1% and 33.6% increase was observed in hesperidin and narirutin, respectively | [83] |
Olive kernels | Polyphenols | 13.3 kV/cm, 10 μs pulse duration, 109 kJ/kg, 10 Hz | HVED was proved a more favorable technique than PEF and US | [84] |
Olive leaves | Polyphenols | 1 kV/cm, 10 μs pulse duration, extraction time 30 min in an aqueous ethanol solution | 31.85% increase in TPC | [86] |
Olive leaves | Polyphenols | Optimization of previous study, 0.85 kV/cm, 2 μs pulse duration, 100 μs duration, 15 min extraction duration, 25% v/v ethanol | 38% increase in TPC under optimum conditions | [87] |
Blueberry juice and press cake | Polyphenols and anthocyanins | 5 kV/cm, 10 kJ/kg | 79 and 106% increase in TPC and TA, respectively | [91] |
Blueberry pomace and juice | Anthocyanins | 20 kV/cm, 10 pulses, 60% ethanol with 0.1% hydrochloric acid, 15 min extraction duration at room temperature | PEF pretreatment demonstrated higher TA values than US in lower temperature and extraction duration | [92] |
Blueberry press cake | Anthocyanins | 3 kV/cm, 10 kJ/kg | 55% increase in TA, 36 and 41% increase in FRAP and DPPH values, respectively | [93] |
Cherry press cake | Anthocyanins and antioxidant power | 1 kV/cm | 40% juice output increase, 80% increase in TA, 27% in antioxidant power | [94] |
Freshly thinned peach by-products | Polyphenols and flavonoids | 5 kV/cm, 3 μs pulse duration | 80% methanol, 35 °C, and no PEF treatment were the optimal conditions, yielding 57% scavenging activity and higher TPC and TFC values | [95] |
Frozen and dried peach pomace | Polyphenols | 0.8–10 kV/cm, 0.0014–2.88 kJ/kg, 4–30 pulses, 4 μs pulse duration, 0.1 Hz | In low energy input (0.06 kJ/kg), PEF increased 81.86% the TPC yield of frozen pomace | [96] |
Apricot kernels defatted biomass | Polyphenols | 1 kV/cm, 10 μs pulse duration, 1000 μs frequency, 15 min treatment duration, solvents were water and DES glycerol:choline chloride 2:1 w/w | The combination of DES and PEF pretreatment yielded a 173% TPC increase | [97] |
Almond hull | Lipids, carbohydrates, and antioxidants | 3 kV/cm, 100 kJ/kg, 100 ms pulse duration, 2 Hz | 77% increase in antioxidant activity and 20% for TPC | [98] |
Quince peels | Bioactive compounds | 1 kV/cm, 10 μs pulse duration, 1ms pulse period, 1000 Hz | PEF did not maximize the bioactive compounds yield, but it enhanced the DPPH radical scavenging value, increasing the antioxidant activity of the extract | [99] |
Papaya peels | Nutraceuticals and antioxidant compounds | Comparison of PEF and HVED, pH ranging from 2.5 to 11, temperature from 20 °C to 60 °C | Optimal conditions were PEF pretreatment, pH value 7, temperature 50 °C, and extraction time 45 min | [100] |
Mango peels | Bioactive compounds | Two-stage PEF, 13.3 kV/cm and 40 kV/cm | 400% TPC yield increase | [101] |
Pomegranate peels | Polyphenols, flavonoids, and tannins | 10 kV/cm, 90–10 kJ/kg, 0.29 kJ | PEF TPC yield was 168.97% higher than US, 387.5% higher than IR, but 15.22% lower than HVED | [102] |
Custard apple leaves | Bioactive compounds | 6 kV/cm, 142 kJ/kg, 300 pulses, 5 min treatment duration | 5.2% increase in extraction yield | [103] |
Jackfruit waste | Pectin | PEF-MAE 10 kV/cm, 4 min treatment duration | 18% increase in pectin extraction | [104] |
White mulberry leaves | Bioactive compounds | 10 kV/cm, 1 μs pulse width, 5 Hz, 20 min treatment, 95% v/v ethanol, 20 min duration | 40% increase in TPC, 14% in DPPH radical scavenging, 20% in ABTS scavenging, 30% in FRAP | [105] |
Tomato peel and pulp | Carotenoids | 5 kV/cm, 90 μs duration, | 39% increase in carotenoids extracted from tomato peels | [106] |
Tomato peels | Lycopene | 5 kV/cm, 5 kJ/kg, | 12–18% increase in lycopene, acetone as a solvent yielded a higher recovery than ethyl lactate | [107] |
Tomato industrial processing residues | Lycopene | 1 kV/cm, 7.5 ms duration | 45% increase in lycopene recovery | [108] |
Tomato peels | Lycopene | Utilization of PEF, MAE, UAE, MUAE, UPAE | UPAE showed 3.56% lycopene yield and 87.09% DPPH value | [109] |
Potato peels | Steroidal alkaloids | 0.75 kV/cm, 600 μs treatment duration | 99.9% increase compared to untreated samples | [114] |
Potato peels | Polyphenols | 5 kV/cm, 10 kJ/kg, | 10% increase in TPC yield and 9% in antioxidant activity | [115] |
Carrot pomace | β-carotene | 0.6 kV/cm, 20 μs pulse width, 3 ms treatment duration, 5 Hz | The application of PEF treatment enhanced the extractability of β-carotene in carrot pomace (19.6 μg/g) compared to the untreated samples | [116] |
Corn silk | Polysaccharides | 30 kV/cm, 6 μs pulse duration | 2.36% increase of polysaccharides | [117] |
Onion skin | Quercetin | 2.5 kV/cm, 15 s treatment duration, and 145 °C for 15 min | 31% increase in quercetin yield | [118] |
Asparagus roots | Polyphenols and flavonoids | 1.6 kV/cm, 20 μs pulse width, 200 Hz | 23% extraction yield increase, 5%, 6%, 60%, and 4% increase in TPC, TFC, DPPH radical scavenging, and FRAP yields, respectively, and 11% decrease in ORAC yield | [119] |
Chicory roots | Inulin | 0.6 kV/cm, 100–500 pulses, 50 ms treatment duration | 4.34% increase in the yield of juice extract at 80 °C, 100% increase in the yield of pulp at 30 °C | [120] |
Cocoa bean shell and coffee silver skin | Polyphenols | 1.74 kV/cm, 991.27 pulses, 11.99 μs treatment duration | 20 and 21.3% increase in cocoa bean shell and coffee silver skin, respectively | [122] |
Coffee parchment and pulp | Polyphenols | 6 kV/cm, 5 Hz, 5 min treatment duration | MAE and PEF yielded 64% increase in polyphenols and 92% increase in flavonoid quantities | [123] |
Vanilla pods, cocoa bean shells, vermouth mixture, and orange peels | Vanillin, theobromine, caffeine, linalool, and limonene | 3 kV/cm, 20 kJ/kg for vanilla pods and cocoa bean shells, 3 kV/cm and 15 kJ/kg for vermouth mixture, 5 kV/cm and 40 kJ/kg for orange peels, ethanol-water, and propylene glycol as two different solvents | In ethanolic extracts, there was a 14% increase in vanillin, 25% in theobromine, 34% in caffeine, 144% in linalool, and 33% in limonene | [124] |
Rapeseed stem and leaves | Proteins and polyphenols | 5 kV/cm, 6.4 kJ/kg | 52% increase in TPC yield | [125] |
Drumstick tree leaves | Polyphenols | 7 kV/cm, 20 ms pulse duration, 100 μs pulse interval | 45% increase in TPC yield | [126] |
Flaxseed hulls | Polyphenols | 20 kV/cm, 300 kJ/kg, 10 ms treatment duration, 0.3 M sodium hydroxide as solvent | 400% increase in TPC yield | [127] |
Sage leaves | Phytochemicals | 1 kV/cm, 100 μs pulse duration, 30 min treatment duration, 25% v/v aqueous ethanol | 73.2 and 403.1% increase in polyphenols and rosmarinic acid yield, respectively | [128] |
Rosemary and thyme stems and leaves | Polyphenols | 1.1 kV/cm, 167 bipolar pulses, 30 μs pulse duration | Rosemary leaves: PEF combined with US showed 650% increase in TPC yield compared to only PEF Thyme leaves: PEF combined with US 700% increase in TPC yield compared to only PEF | [129] |
Fishery by-products | Bioactive compounds | 1–3 kV/cm, 300 kJ/kg, 15 to 24 h treatment duration | 80% increase in protein extraction, 26% increase in ABTS for PEF treatment, ASE was proved a more efficient pre-treatment technique in general | [131] |
Shrimp by-products | Astaxanthin | 3 kV/cm, 100 kJ/kg, 74 pulses, DMSO | PEF and ASE yielded 150% and 200% increases compared to control in astaxanthin content at M. cerathurus and A. antennatus, respectively | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review. Biomass 2023, 3, 367-401. https://doi.org/10.3390/biomass3040022
Chatzimitakos T, Athanasiadis V, Kalompatsios D, Mantiniotou M, Bozinou E, Lalas SI. Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review. Biomass. 2023; 3(4):367-401. https://doi.org/10.3390/biomass3040022
Chicago/Turabian StyleChatzimitakos, Theodoros, Vassilis Athanasiadis, Dimitrios Kalompatsios, Martha Mantiniotou, Eleni Bozinou, and Stavros I. Lalas. 2023. "Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review" Biomass 3, no. 4: 367-401. https://doi.org/10.3390/biomass3040022
APA StyleChatzimitakos, T., Athanasiadis, V., Kalompatsios, D., Mantiniotou, M., Bozinou, E., & Lalas, S. I. (2023). Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review. Biomass, 3(4), 367-401. https://doi.org/10.3390/biomass3040022