Elephant Grass (Pennisetum purpureum): A Bioenergy Resource Overview
Abstract
:1. Introduction
2. Elephant Grass (Growth Patterns, Geographic Distribution, Adaptability and Environmental Benefits)
3. Composition
3.1. Lignocellulosic Composition
3.2. Proximate and Ultimate Analysis
3.2.1. Proximate Analysis
3.2.2. Ultimate Analysis
3.3. Lower and Higher Heating Value of EG
Top of Form
4. Energy Conversion Technologies/Pathways of EG
4.1. Bioethanol
4.2. Biogas/Biomethane
4.3. Pyrolysis
4.3.1. Bio-Oil
4.3.2. Biogas
4.3.3. Biochar
4.4. Pelletization
4.5. Value Added Chemicals
4.6. Combined Heat and Power (CHP) Generation
5. Techno-Economic Analysis
5.1. Cost Analysis
5.2. Economic Viability and Market Potential
6. Environmental Analysis
6.1. Life Cycle Assessment
6.2. Water Footprint and Carbon Footprint
7. Future Prospects and Recommendations for Further Studies
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dari, D.N.; Freitas, I.S.; Aires, F.I.D.S.; Melo, R.L.F.; dos Santos, K.M.; da Silva Sousa, P.; de Sousa Junior, P.; Luthierre Gama Cavalcante, A.; Neto, F.S.; da Silva, J.L.; et al. An Updated Review of Recent Applications and Perspectives of Hydrogen Production from Biomass by Fermentation: A Comprehensive Analysis. Biomass 2024, 4, 132–163. [Google Scholar] [CrossRef]
- Sharew, S.; Montastruc, L.; Yimam, A.; Negny, S.; Ferrasse, J.-H. Alternative Energy Potential and Conversion Efficiency of Biomass into Target Biofuels: A Case Study in Ethiopian Sugar Industry-Wonji-Shoa. Biomass 2022, 2, 279–298. [Google Scholar] [CrossRef]
- Marafon, A.C.; Amaral, A.F.C.; Machado, J.C.; Carneiro, J.D.C.; Bierhals, A.N.; Guimarães, V.d.S. Chemical Composition and Calorific Value of Elephant Grass Varieties and Other Feedstocks Intended for Direct Combustion. Grassl. Sci. 2021, 67, 241–249. [Google Scholar] [CrossRef]
- Neuwald, O.; Borghetti, M.; Perondi, D.; Hillig, E.; Godinho, M. Steam Catalytic Gasification of Elephant Grass Pellets. Process Saf. Environ. Prot. 2022, 162, 620–630. [Google Scholar] [CrossRef]
- Marroquin, L.; Mendez, J.D.J.; MEDINA, C.; Avendaño-Arrazate, C.H.; Flores, R. Morphological Characterization of Elephant Grass (Pennisetum purpureum Schumach) Ecotypes Collected in Chiapas, Mexico. Agro Product. 2023, 16, 33–43. [Google Scholar] [CrossRef]
- Fontoura, C.F.; Brandão, L.E.; Gomes, L.L. Elephant Grass Biorefineries: Towards a Cleaner Brazilian Energy Matrix? J. Clean. Prod. 2015, 96, 85–93. [Google Scholar] [CrossRef]
- Danquah, J.; Roberts, C.; Appiah, M. Elephant Grass (Pennisetum purpureum ): A Potential Source of Biomass for Power Generation in Ghana. Curr. J. Appl. Sci. Technol. 2018, 30, 1–12. [Google Scholar] [CrossRef]
- Egwu, U. Improvement of Biomethane Potential of Elephant Grass (Napier Grass, Pennisetum purpureum Schum) by Addition of Biomass Ash and Ash-Extracts as Supplements. Bioresour. Technol. Rep. 2021, 15, 100760. [Google Scholar] [CrossRef]
- Ferreira, S.D.; Manera, C.; Silvestre, W.P.; Pauletti, G.F.; Altafini, C.R.; Godinho, M. Use of Biochar Produced from Elephant Grass by Pyrolysis in a Screw Reactor as a Soil Amendment. Waste Biomass Valorization 2019, 10, 3089–3100. [Google Scholar] [CrossRef]
- Taufikurahman; Sherly; Jessica; Delimanto, W.O. Production of Bioethanol from Napier Grass: Comparison in Pre-Treatment and Fermentation Methods. IOP Conf. Ser. Earth Environ. Sci. 2020, 520, 012005. [Google Scholar] [CrossRef]
- Kesia Faria Vidal, A.; Freitas, R.S.; Daher, R.F.; Ambrósio, M.; Santana, J.G.S.; Stida, W.F.; Nascimento, M.R.; Santos, R.M.; Leite, C.L.; Netto, J.A.L. Genotypic Superiority and Repeatability Coefficient in Elephant Grass Clones for Forage Production via Mixed Models. Euphytica 2023, 219, 1–12. [Google Scholar] [CrossRef]
- Jansen, R.A. Second Generation Biofuels and Biomass: Essential Guide for Investors, Scientists and Decision Makers; Wiley-VCH: Weinheim, Germany, 2013; ISBN 9783527332908. [Google Scholar]
- Scholl, A.L.; Menegol, D.; Pitarelo, A.P.; Fontana, R.C.; Filho, A.Z.; Ramos, L.P.; Dillon, A.J.P.; Camassola, M. Ethanol Production from Sugars Obtained during Enzymatic Hydrolysis of Elephant Grass (Pennisetum purpureum, Schum.) Pretreated by Steam Explosion. Bioresour. Technol. 2015, 192, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Madakadze, I.; Masamvu, T.; Li, J.; Smith, D. Evaluation of Pulp and Paper Making Characteristics of Elephant Grass (Pennisetum purpureum Schum) and Switchgrass (Panicum virgatum L.). Afr. J. Environ. Sci. Technol. 2010, 4, 465–470. [Google Scholar]
- López, Y.; Seib, J.; Woodard, K.; Chamusco, K.; Sollenberger, L.; Gallo, M.; Flory, S.L.; Chase, C. Genetic Diversity of Biofuel and Naturalized Napiergrass (Pennisetum purpureum). Invasive Plant Sci. Manag. 2014, 7, 229–236. [Google Scholar] [CrossRef]
- Ra, K.; Shiotsu, F.; Abe, J.; Morita, S. Biomass Yield and Nitrogen Use Efficiency of Cellulosic Energy Crops for Ethanol Production. Biomass Bioenergy 2012, 37, 330–334. [Google Scholar] [CrossRef]
- Laurent, A.; Pelzer, E.; Loyce, C.; Makowski, D. Ranking Yields of Energy Crops: A Meta-Analysis Using Direct and Indirect Comparisons. Renew. Sustain. Energy Rev. 2015, 46, 41–50. [Google Scholar] [CrossRef]
- Takara, D.; Khanal, S.K. Characterizing Compositional Changes of Napier Grass at Different Stages of Growth for Biofuel and Biobased Products Potential. Bioresour. Technol. 2015, 188, 103–108. [Google Scholar] [CrossRef]
- Montipó, S.; Ballesteros, I.; Fontana, R.C.; Liu, S.; Martins, A.F.; Ballesteros, M.; Camassola, M. Integrated Production of Second Generation Ethanol and Lactic Acid from Steam-Exploded Elephant Grass. Bioresour. Technol. 2018, 249, 1017–1024. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Lee, W.-C.; Kuan, W.-C.; Sirisansaneeyakul, S.; Savarajara, A. Evaluation of Different Pretreatments of Napier Grass for Enzymatic Saccharification and Ethanol Production. Energy Sci. Eng. 2018, 6, 683–692. [Google Scholar] [CrossRef]
- He, C.-R.; Kuo, Y.-Y.; Li, S.-Y. Lignocellulosic Butanol Production from Napier Grass Using Semi-Simultaneous Saccharification Fermentation. Bioresour. Technol. 2017, 231, 101–108. [Google Scholar] [CrossRef]
- García, J.C.; Alfaro, A.; Loaiza, J.M.; Lozano-Calvo, S.; López, F. Cold Alkaline Extraction of Elephant Grass for Optimal Subsequent Extraction of Hemicelluloses and Energy Production. Biomass Convers. Biorefinery 2022, 14, 8307–8320. [Google Scholar] [CrossRef]
- Vargas, A.C.G.; Dresch, A.P.; Schmidt, A.R.; Tadioto, V.; Giehl, A.; Fogolari, O.; Mibielli, G.M.; Alves, S.L.; Bender, J.P. Batch Fermentation of Lignocellulosic Elephant Grass Biomass for 2G Ethanol and Xylitol Production. Bioenergy Res. 2023, 16, 2219–2228. [Google Scholar] [CrossRef]
- Dorez, G.; Ferry, L.; Sonnier, R.; Taguet, A.; Lopez-Cuesta, J.-M. Effect of Cellulose, Hemicellulose and Lignin Contents on Pyrolysis and Combustion of Natural Fibers. J. Anal. Appl. Pyrolysis 2014, 107, 323–331. [Google Scholar] [CrossRef]
- Johannes, L.P.; Xuan, T.D. Comparative Analysis of Acidic and Alkaline Pretreatment Techniques for Bioethanol Production from Perennial Grasses. Energies 2024, 17, 1048. [Google Scholar] [CrossRef]
- Williams, C.L.; Westover, T.L.; Emerson, R.M.; Tumuluru, J.S.; Li, C. Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. Bioenergy Res. 2016, 9, 1–14. [Google Scholar] [CrossRef]
- Reza, M.S.; Islam, S.N.; Afroze, S.; Abu Bakar, M.S.; Sukri, R.S.; Rahman, S.; Azad, A.K. Evaluation of the Bioenergy Potential of Invasive Pennisetum purpureum through Pyrolysis and Thermogravimetric Analysis. Energy Ecol. Environ. 2020, 5, 118–133. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Preto, F.; Zhu, J.; Xu, C. Ash Deposition in Biomass Combustion or Co-Firing for Power/Heat Generation. Energies 2012, 5, 5171–5189. [Google Scholar] [CrossRef]
- Strezov, V.; Evans, T.J.; Hayman, C. Thermal Conversion of Elephant Grass (Pennisetum purpureum Schum) to Bio-Gas, Bio-Oil and Charcoal. Bioresour. Technol. 2008, 99, 8394–8399. [Google Scholar] [CrossRef]
- Azargohar, R.; Nanda, S.; Kozinski, J.A.; Dalai, A.K.; Sutarto, R. Effects of Temperature on the Physicochemical Characteristics of Fast Pyrolysis Bio-Chars Derived from Canadian Waste Biomass. Fuel 2014, 125, 90–100. [Google Scholar] [CrossRef]
- Mohammed, I.Y.; Abakr, Y.A.; Kazi, F.K.; Yusup, S.; Alshareef, I.; Chin, S.A. Comprehensive Characterization of Napier Grass as a Feedstock for Thermochemical Conversion. Energies 2015, 8, 3403–3417. [Google Scholar] [CrossRef]
- De Conto, D.; Silvestre, W.P.; Baldasso, C.; Godinho, M. Performance of Rotary Kiln Reactor for the Elephant Grass Pyrolysis. Bioresour. Technol. 2016, 218, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Collazzo, G.C.; Broetto, C.C.; Perondi, D.; Junges, J.; Dettmer, A.; Dornelles Filho, A.A.; Foletto, E.L.; Godinho, M. A Detailed Non-Isothermal Kinetic Study of Elephant Grass Pyrolysis from Different Models. Appl. Therm. Eng. 2017, 110, 1200–1211. [Google Scholar] [CrossRef]
- Mesa-Pérez, J.M.; Cortez, L.A.B.; Marín-Mesa, H.R.; Rocha, J.D.; Peláez-Samaniego, M.R.; Cascarosa, E. A Statistical Analysis of the Auto Thermal Fast Pyrolysis of Elephant Grass in Fluidized Bed Reactor Based on Produced Charcoal. Appl. Therm. Eng. 2014, 65, 322–329. [Google Scholar] [CrossRef]
- Lee, M.-K.; Tsai, W.-T.; Tsai, Y.-L.; Lin, S.-H. Pyrolysis of Napier Grass in an Induction-Heating Reactor. J. Anal. Appl. Pyrolysis 2010, 88, 110–116. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical Properties of Solid Biofuels—Significance and Impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Rengsirikul, K.; Ishii, Y.; Kangvansaichol, K.; Pripanapong, P.; Sripichitt, P.; Punsuvon, V.; Vaithanomsat, P.; Nakamanee, G.; Tudsri, S. Effects of Inter-Cutting Interval on Biomass Yield, Growth Components and Chemical Composition of Napiergrass (Pennisetum purpureum Schumach) Cultivars as Bioenergy Crops in Thailand. Grassl. Sci. 2011, 57, 135–141. [Google Scholar] [CrossRef]
- Tsai, W.-T.; Tsai, Y.-L. Thermochemical Characterization of Napier Grass as an Energy Source and Its Environmental and Economic Benefit Analysis. Energy Sources Part B Econ. Plan. Policy 2016, 11, 130–136. [Google Scholar]
- Mohammed, I.Y.; Abakr, Y.A.; Yusup, S.; Kazi, F.K. Valorization of Napier Grass via Intermediate Pyrolysis: Optimization Using Response Surface Methodology and Pyrolysis Products Characterization. J. Clean. Prod. 2017, 142, 1848–1866. [Google Scholar] [CrossRef]
- Oliveira, T.L.; Assis, P.S.; Leal, E.M.; Ilídio, J.R. Study of Biomass Applied to a Cogeneration System: A Steelmaking Industry Case. Appl. Therm. Eng. 2015, 80, 269–278. [Google Scholar] [CrossRef]
- Manouchehrinejad, M.; Sahoo, K.; Kaliyan, N.; Singh, H.; Mani, S. Economic and Environmental Impact Assessments of a Stand-Alone Napier Grass-Fired Combined Heat and Power Generation System in the Southeastern US. Int. J. Life Cycle Assess. 2020, 25, 89–104. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Pandey, A. Biological Pretreatment of Lignocellulosic Biomass—An Overview. Bioresour. Technol. 2016, 199, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.C.; de Souza, W.; Sant ’Anna, C.; Brienzo, M. Elephant Grass Leaves Have Lower Recalcitrance to Acid Pretreatment than Stems, with Higher Potential for Ethanol Production. Ind. Crops Prod. 2018, 111, 193–200. [Google Scholar] [CrossRef]
- Lima, M.A.; Gomez, L.D.; Steele-King, C.G.; Simister, R.; Bernardinelli, O.D.; Carvalho, M.A.; Rezende, C.A.; Labate, C.A.; Deazevedo, E.R.; McQueen-Mason, S.J. Evaluating the Composition and Processing Potential of Novel Sources of Brazilian Biomass for Sustainable Biorenewables Production. Biotechnol. Biofuels 2014, 7, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Eliana, C.; Jorge, R.; Juan, P.; Luis, R. Effects of the Pretreatment Method on Enzymatic Hydrolysis and Ethanol Fermentability of the Cellulosic Fraction from Elephant Grass. Fuel 2014, 118, 41–47. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.; Sharma-Shivappa, R.; Cheng, J. Enzymatic Hydrolysis of Switchgrass and Coastal Bermuda Grass Pretreated Using Different Chemical Methods. Bioresources 2011, 6, 2990–3003. [Google Scholar] [CrossRef]
- Cardona, E.; Rios, J.; Peña, J.; Peñuela, M.; Rios, L. King Grass: A Very Promising Material for the Production of Second Generation Ethanol in Tropical Countries. Biomass Bioenergy 2016, 95, 206–213. [Google Scholar] [CrossRef]
- Kongkeitkajorn, M.B.; Sae-Kuay, C.; Reungsang, A. Evaluation of Napier Grass for Bioethanol Production through a Fermentation Process. Processes 2020, 8, 567. [Google Scholar] [CrossRef]
- Stanley, H.O.; Ezeife, C.O.; Onwukwe, C. Bioethanol Production from Elephant Grass (Pennisetum purpureum). Niger. J. Biotechnol. 2017, 32, 1. [Google Scholar] [CrossRef]
- Iyyappan, J.; Pravin, R.; Al-Ghanim, K.A.; Govindarajan, M.; Nicoletti, M.; Baskar, G. Dual Strategy for Bioconversion of Elephant Grass Biomass into Fermentable Sugars Using Trichoderma Reesei towards Bioethanol Production. Bioresour. Technol. 2023, 374, 128804. [Google Scholar] [CrossRef]
- Scopel, E.; dos Santos, L.C.; Bofinger, M.R.; Martínez, J.; Rezende, C.A. Green Extractions to Obtain Value-Added Elephant Grass Co-Products in an Ethanol Biorefinery. J. Clean. Prod. 2020, 274, 122769. [Google Scholar] [CrossRef]
- Kolo, S.M.D.; Wahyuningrum, D.; Hertadi, R. The Effects of Microwave-Assisted Pretreatment and Cofermentation on Bioethanol Production from Elephant Grass. Int. J. Microbiol. 2020, 2020, 6562730. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, Y.; Li, L.; Sun, Y.; Kong, X.; Yuan, Z. Enhanced Methane Production from Anaerobic Digestion of Hybrid Pennisetum by Selectively Removing Lignin with Sodium Chlorite. Bioresour. Technol. 2020, 295, 122289. [Google Scholar] [CrossRef]
- Egwu, U.; Sallis, P.; Oko, E. Study of the Impacts of Supplements on the Specific Methane Production during Anaerobic Digestion of the West African Gamba and Guinea Grass. Fuel 2021, 285, 119060. [Google Scholar] [CrossRef]
- Wu, P.; Li, L.; Jiang, J.; Sun, Y.; Yuan, Z.; Feng, X.; Guo, Y. Effects of Fermentative and Non-Fermentative Additives on Silage Quality and Anaerobic Digestion Performance of Pennisetum purpureum. Bioresour. Technol. 2020, 297, 122425. [Google Scholar] [CrossRef] [PubMed]
- Frigon, J.; Guiot, S.R. Biomethane Production from Starch and Lignocellulosic Crops: A Comparative Review. Biofuels Bioprod. Biorefining 2010, 4, 447–458. [Google Scholar] [CrossRef]
- Surendra, K.C.; Khanal, S.K. Effects of Crop Maturity and Size Reduction on Digestibility and Methane Yield of Dedicated Energy Crop. Bioresour. Technol. 2015, 178, 187–193. [Google Scholar] [CrossRef]
- Wellinger, A.; Murphy, J.D.; Baxter, D. The Biogas Handbook: Science, Production and Applications; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 0857097415. [Google Scholar]
- Haryanto, A.; Hasanudin, U.; Afrian, C.; Zulkarnaen, I. Biogas Production from Anaerobic Codigestion of Cowdung and Elephant Grass (Pennisetum purpureum) Using Batch Digester. IOP Conf. Ser. Earth Environ. Sci. 2018, 141, 012011. [Google Scholar] [CrossRef]
- Özçimen, D.; Ersoy-Meriçboyu, A. Characterization of Biochar and Bio-Oil Samples Obtained from Carbonization of Various Biomass Materials. Renew Energy 2010, 35, 1319–1324. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, X.; Li, W.; Shi, Y. Preparation and Characterization of Bio-Oil from Biomass. Prog. Biomass Bioenergy Prod. 2011, 197–222. [Google Scholar] [CrossRef]
- Sirijanusorn, S.; Sriprateep, K.; Pattiya, A. Pyrolysis of Cassava Rhizome in a Counter-Rotating Twin Screw Reactor Unit. Bioresour. Technol. 2013, 139, 343–348. [Google Scholar] [CrossRef]
- Sanginés, P.; Domínguez, M.P.; Sánchez, F.; San Miguel, G. Slow Pyrolysis of Olive Stones in a Rotary Kiln: Chemical and Energy Characterization of Solid, Gas, and Condensable Products. J. Renew. Sustain. Energy 2015, 7, 043103. [Google Scholar] [CrossRef]
- Saikia, R.; Chutia, R.S.; Kataki, R.; Pant, K.K. Perennial Grass (Arundo donax L.) as a Feedstock for Thermo-Chemical Conversion to Energy and Materials. Bioresour. Technol. 2015, 188, 265–272. [Google Scholar] [CrossRef]
- Lin, B.-J.; Chen, W.-H. Sugarcane Bagasse Pyrolysis in a Carbon Dioxide Atmosphere with Conventional and Microwave-Assisted Heating. Front. Energy Res. 2015, 3, 4. [Google Scholar] [CrossRef]
- Encinar, J.M.; Gonzalez, J.F.; Gonzalez, J. Fixed-Bed Pyrolysis of Cynara cardunculus L. Product Yields and Compositions. Fuel Process. Technol. 2000, 68, 209–222. [Google Scholar] [CrossRef]
- Kern, S.; Halwachs, M.; Kampichler, G.; Pfeifer, C.; Pröll, T.; Hofbauer, H. Rotary Kiln Pyrolysis of Straw and Fermentation Residues in a 3MW Pilot Plant—Influence of Pyrolysis Temperature on Pyrolysis Product Performance. J. Anal. Appl. Pyrolysis 2012, 97, 1–10. [Google Scholar] [CrossRef]
- Yan, F.; Luo, S.; Hu, Z.; Xiao, B.; Cheng, G. Hydrogen-Rich Gas Production by Steam Gasification of Char from Biomass Fast Pyrolysis in a Fixed-Bed Reactor: Influence of Temperature and Steam on Hydrogen Yield and Syngas Composition. Bioresour. Technol. 2010, 101, 5633–5637. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, J.; Ge, X.; Chen, M. By-Products Recycling for Syngas Cleanup in Biomass Pyrolysis–An Overview. Renew. Sustain. Energy Rev. 2016, 59, 1246–1268. [Google Scholar] [CrossRef]
- Kumkum, P.; Kumar, S. A Review on Biochar as an Adsorbent for Pb(II) Removal from Water. Biomass 2024, 4, 243–272. [Google Scholar] [CrossRef]
- Vaskalis, I.; Zabaniotou, A. Comparative Feasibility and Environmental Life Cycle Assessment of Cotton Stalks Gasification and Pyrolysis. Biomass 2024, 4, 23–48. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal Degradation of Lignin—A Review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis —A Technological Review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Ferreira, S.D.; Lazzarotto, I.P.; Junges, J.; Manera, C.; Godinho, M.; Osório, E. Steam Gasification of Biochar Derived from Elephant Grass Pyrolysis in a Screw Reactor. Energy Convers. Manag. 2017, 153, 163–174. [Google Scholar] [CrossRef]
- Sattar, A.; Leeke, G.A.; Hornung, A.; Wood, J. Steam Gasification of Rapeseed, Wood, Sewage Sludge and Miscanthus Biochars for the Production of a Hydrogen-Rich Syngas. Biomass Bioenergy 2014, 69, 276–286. [Google Scholar] [CrossRef]
- Unpinit, T.; Poblarp, T.; Sailoon, N.; Wongwicha, P.; Thabuot, M. Fuel Properties of Bio-Pellets Produced from Selected Materials under Various Compacting Pressure. Energy Procedia 2015, 79, 657–662. [Google Scholar] [CrossRef]
- da Silva, V.; Daher, R.F.; de Souza, Y.P.; da Silva Menezes, B.R.; Azevedo Santos, E.; Souza Freitas, R.; da Silva Oliveira, E.; Francesconi Stida, W.; Cassaro, S. Assessment of Energy Production in Full-Sibling Families of Elephant Grass by Mixed Models. Renew. Energy 2020, 146, 744–749. [Google Scholar] [CrossRef]
- Garcia, D.P.; Caraschi, J.C.; Ventorim, G.; Vieira, F.H.A.; de Paula Protásio, T. Comparative Energy Properties of Torrefied Pellets in Relation to Pine and Elephant Grass Pellets. Bioresources 2018, 13, 2898–2906. [Google Scholar] [CrossRef]
- Attard, T.M.; Bukhanko, N.; Eriksson, D.; Arshadi, M.; Geladi, P.; Bergsten, U.; Budarin, V.L.; Clark, J.H.; Hunt, A.J. Supercritical Extraction of Waxes and Lipids from Biomass: A Valuable First Step towards an Integrated Biorefinery. J. Clean. Prod. 2018, 177, 684–698. [Google Scholar] [CrossRef]
- Attard, T.M.; McElroy, C.R.; Rezende, C.A.; Polikarpov, I.; Clark, J.H.; Hunt, A.J. Sugarcane Waste as a Valuable Source of Lipophilic Molecules. Ind. Crops Prod. 2015, 76, 95–103. [Google Scholar] [CrossRef]
- Trevisan, H.; Rezende, C.A. Pure, Stable and Highly Antioxidant Lignin Nanoparticles from Elephant Grass. Ind. Crops Prod. 2020, 145, 112105. [Google Scholar] [CrossRef]
- Heldt, H.-W.; Piechulla, B. Plant Biochemistry; Academic Press: Cambridge, MA, USA, 2021; ISBN 0128227133. [Google Scholar]
- Bradford, P.G.; Awad, A.B. Phytosterols as Anticancer Compounds. Mol. Nutr. Food Res. 2007, 51, 161–170. [Google Scholar] [CrossRef]
- Nitsos, C.; Stoklosa, R.; Karnaouri, A.; Voros, D.; Lange, H.; Hodge, D.; Crestini, C.; Rova, U.; Christakopoulos, P. Isolation and Characterization of Organosolv and Alkaline Lignins from Hardwood and Softwood Biomass. ACS Sustain. Chem. Eng. 2016, 4, 5181–5193. [Google Scholar] [CrossRef]
- Arni, S. Al Extraction and Isolation Methods for Lignin Separation from Sugarcane Bagasse: A Review. Ind. Crops Prod. 2018, 115, 330–339. [Google Scholar] [CrossRef]
- Resende, K.A.; Ávila-Neto, C.N.; Rabelo-Neto, R.C.; Noronha, F.B.; Hori, C.E. Thermodynamic Analysis and Reaction Routes of Steam Reforming of Bio-Oil Aqueous Fraction. Renew. Energy. 2015, 80, 166–176. [Google Scholar] [CrossRef]
- Lim, C.H.; Mohammed, I.Y.; Abakr, Y.A.; Kazi, F.K.; Yusup, S.; Lam, H.L. Novel Input-Output Prediction Approach for Biomass Pyrolysis. J. Clean. Prod. 2016, 136, 51–61. [Google Scholar] [CrossRef]
- Jin, T. The Effectiveness of Combined Heat and Power (CHP) Plant for Carbon Mitigation: Evidence from 47 Countries Using CHP Plants. Sustain. Energy Technol. Assess. 2022, 50, 101809. [Google Scholar] [CrossRef]
- Rocha, J.R.d.A.S.d.C.; Machado, J.C.; Carneiro, P.C.S.; Carneiro, J.d.C.; Resende, M.D.V.; Pereira, A.V.; Carneiro, J.E.d.S. Elephant Grass Ecotypes for Bioenergy Production via Direct Combustion of Biomass. Ind. Crops Prod. 2017, 95, 27–32. [Google Scholar] [CrossRef]
- Sainju, U.M.; Singh, H.; Singh, B.P. Soil Carbon and Nitrogen in Response to Perennial Bioenergy Grass, Cover Crop and Nitrogen Fertilization. Pedosphere 2017, 27, 223–235. [Google Scholar] [CrossRef]
- Knoll, J.E.; Anderson, W.F.; Strickland, T.C.; Hubbard, R.K.; Malik, R. Low-Input Production of Biomass from Perennial Grasses in the Coastal Plain of Georgia, USA. Bioenergy Res. 2012, 5, 206–214. [Google Scholar] [CrossRef]
- Balogun Mohammed, A.; Vijlee, S.; Belmont, E. Technoeconomic Feasibility of a Sustainable Charcoal Industry to Reduce Deforestation in Haiti. Sustain. Energy Tech Assess. 2018, 29, 131–138. [Google Scholar] [CrossRef]
- Safaat, M.; Wulan, P. Technoeconomic Analysis of Integrated Bioethanol from Elephant Grass (Pennisetum purpureum) with Utilization of Its Residue and Lignin. Ind. J. Teknol. Dan Manaj. Agroindustri 2022, 11, 64–80. [Google Scholar] [CrossRef]
- Ale, S.; Femeena, P.V.; Mehan, S.; Cibin, R. Chapter 10—Environmental Impacts of Bioenergy Crop Production and Benefits of Multifunctional Bioenergy Systems. In Bioenergy with Carbon Capture and Storage; Magalhães Pires, J.C., Da Cunha Gonçalves, A.L., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 195–217. ISBN 978-0-12-816229-3. [Google Scholar]
- Hiloidhari, M.; Baruah, D.C.; Singh, A.; Kataki, S.; Medhi, K.; Kumari, S.; Ramachandra, T.V.; Jenkins, B.M.; Thakur, I.S. Emerging Role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and Spatial LCA (GIS-LCA) in Sustainable Bioenergy Planning. Bioresour. Technol. 2017, 242, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Kommalapati, R.R.; Huque, Z. The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass. Sustainability 2015, 7, 12974–12987. [Google Scholar] [CrossRef]
- Morais, R.; Morais, C.; Fiusa, L.; Almeida, J.C. Energy Balance of Elephant Grass Biomass for Power Generation by Direct Biomass Combustion. Afr. J. Biotechnol. 2018, 17, 405–410. [Google Scholar] [CrossRef]
- Nimmanterdwong, P.; Chalermsinsuwan, B.; Østergård, H.; Piumsomboon, P. Environmental Performance Assessment of Napier Grass for Bioenergy Production. J. Clean. Prod. 2017, 165, 645–655. [Google Scholar] [CrossRef]
- Osman, A.I.; Fang, B.; Zhang, Y.; Liu, Y.; Yu, J.; Farghali, M.; Rashwan, A.K.; Chen, Z.; Chen, L.; Ihara, I.; et al. Life Cycle Assessment and Techno-Economic Analysis of Sustainable Bioenergy Production: A Review. Environ. Chem. Lett. 2024, 22, 1115–1154. [Google Scholar] [CrossRef]
- Mustapha, O.R.; Osobamiro, T.; Sanyaolu, N.; Alabi, O. Adsorption Study of Methylene Blue Dye: An Effluents from Local Textile Industry Using Pennisteum pupureum (Elephant Grass). Int. J. Phytoremediation 2023, 25, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems. Sustainability 2016, 8, 1181. [Google Scholar] [CrossRef]
- Román, S.; Ledesma, B.; Álvarez, A.; Coronella, C.; Qaramaleki, S. V Suitability of Hydrothermal Carbonization to Convert Water Hyacinth to Added-Value Products. Renew. Energy. 2020, 146, 1649–1658. [Google Scholar] [CrossRef]
Cellulose [%] | Hemicellulose [%] | Lignin [%] | Location | Age | References |
---|---|---|---|---|---|
22.60–42.40 | 16.9–22.4 | 18.40–23.40 | Nigeria | 3 weeks regrowth | [8] |
36.18 ± 5.40 | 27.50 ± 5.92 | 12.19 ± 4.93 | Indonesia | 3 months | [10] |
35.00 ± 2.90–39.4 ± 2.20 | 19.20 ± 1.20–21.70 ± 1.00 | 15.30 ± 3.40–18.8 ± 2.3 | Hawaii | 2–8 months | [18] |
33.60 ± 0.11 | 20.62 ± 0.02 | 18.42 ± 0.11 | Brazil | - | [19] |
41.80 ± 2.20 | 23.20 ± 1.10 | 25.00 ± 0.30 | Taiwan | - | [20] |
36.80 | 18.00 | 23.40 | Taiwan | - | [21] |
41.70 | 27.40 | 20.90 | Brazil | - | [22] |
36.00 | 30.30 | 8.80 | Brazil | 6 months | [3] |
35.69 ± 3.01 | 15.26 ± 2.72 | 18.03 ± 1.03 | Brazil | - | [23] |
Moisture [%] | Fixed Carbon [%] | Volatile Matter [%] | Ash [%] | Location | Age | References |
---|---|---|---|---|---|---|
7.90 | 18.80 | 70.30 | 3.00 | Brazil | - | [29] |
5.93 | 16.81 | 69.44 | 7.82 | Brunei | - | [27] |
11.70 | 9.53 | 82.39 | 8.07 | Brazil | 4 months | [9] |
9.80 | 7.70 | 69.20 | 13.30 | Brazil | - | [33] |
10.63 | 19.20 | 72.54 | 8.26 | Brazil | 6 months | [32] |
12.20 | 15.54 | 67.34 | 4.92 | Brazil | - | [34] |
9.43 | 8.35 | 72.58 | 9.68 | Taiwan | 3 months | [35] |
Carbon [%] | Hydrogen [%] | Nitrogen [%] | Oxygen [%] | Sulfur [%] | References |
---|---|---|---|---|---|
43.8 | 5.08 | 0.45 | - | 5.70 | [29] |
41.9–44.6 | 5.83–6.24 | 0.49–0.84 | 42.1–046.6 | - | [3] |
43.32 | 5.80 | 1.17 | 41.78 | 0.11 | [27] |
38.20 | 5.70 | 1.16 | 54.94 | - | [9] |
39.63 | 6.31 | 1.70 | 52.16 | 0.20 | [32] |
46.52 | 5.87 | 1.47 | 46.04 | 0.10 | [33] |
41.16 | 5.55 | 1.78 | 46.59 | - | [34] |
42.40 | 5.96 | 1.71 | 45.32 | 0.09 | [35] |
HHV [MJ/kg] | LHV [MJ/kg] | Location | Age | References |
---|---|---|---|---|
18.55 | - | Brunei | - | [27] |
14.70 | - | Brazil | - | [34] |
15.77 | - | Brazil | 6 months | [32] |
15.97 | - | Brazil | 4 months | [9] |
- | 16.29–17.28 | Brazil | 6 months | [3] |
- | 14.85–15.86 | Thailand | 1, 2, 3, 6 months | [37] |
16.30 | - | Taiwan | - | [38] |
18.05 ± 0.07 | - | Malaysia | - | [39] |
- | 17.10 | Brazil | - | [40] |
18.44 | - | Brazil | 6 months | [22] |
Pretreatment | Enzymatic Hydrolysis and Fermentation | Sugar Yield | Ethanol Yield | References |
---|---|---|---|---|
Steam explosion | Celluclast® cellulase 15 FPU/g, Novozyme 188® (from Novozymes, Bagsvaerd, Denmark), β-glucosidase 15 IU/g. Saccharomyces cerevisiae (SSF) | Glucose 0.38 g/g WIS | 42.25 g/L | [19] |
Alkaline (NaOH) | Cellulase Cellic CTec2 and HTec2 12 FPU/g. S. cerevisiae SSF | Glucose: 51.60 g/L Xylose: 13.50 g/L | 0.143 ± 0.006 g/g | [20] |
Acid (H2SO4) | Glucose: 29.20 g/L Xylose: 5.10 g/L | 0.075 ± 0.003 g/g | ||
Acid-Alkaline H2SO4-NaOH | Glucose: 56.90 g/L Xylose: 4.20 g/L | 0.116 ± 0.006 g/g | ||
Alkaline (NaOH) | cellulase CellicR CTec2 (5–40 FPU/g). S. cerevisiae SHF and SSF | TRS: 90.00 g/L through SSF | 30.60 ± 0.40 g/L (SHF) 28.50 ± 2.30 g/L (SSF) | [48] |
Steam explosion | Aspergillus spp and S.cerevisiae | - | 9 ml | [49] |
Biological | K. marxianus MTCC 1389 and T. reesei MTCC 4876 and Phanerochaete chrysosporium MTCC4955 | TRS: 84.52 ± 3.5 g/L | 14.65 ± 1.75 g/L | [50] |
Supercritical carbon dioxide (SFE) and pressurized liquid extractions (PLE) | - | 124.3 ± 2.7 mg/g (SFE) 198.2± 20 mg/g SFE) | - | [51] |
H2SO4 | 5 FPU/g Celluclast 1.5 L and 15 U/g β-glucosidase | 330 mg/g | - | [43] |
Steam explosion | 10 FPU/g of enzyme produced from the EG | 248.34 mg/g | - | [13] |
Alkaline | NS22244-CELLIC® HTec228 FPU (from Novozymes Latin America, Araucária, Brazil) and 2% (wt.) for CELLIC® CTec2113 FPU (from Novozymes, Bagsvaerd, Denmark) and yeast cells | TRS: 19.88 ± 1.56–25.62 ± 0.83 g/L | 3.95–7.94 g/L | [23] |
Acid-Microwave | S. cerevisiae ITB-R89 and Pichia stipitis ITB-R58 | Glucose: 10.79 g/L | 0.45 g/L | [52] |
Treatment | Inhibitory Compounds | Reference |
---|---|---|
Acid | Acetic acid: 3.9 ± 0.1 g/L Furfural: 0.31 ± 0.03 g/L 5-HMF: 0.63 ± 0.06 g/L | [20] |
Acid | 5-HMF: (18 µg/g) 2-Furaldehyde: (very minimal) | [44] |
Alkaline | Acetic acid: 2.48 ± 0.05 Others: 2.48 ± 0.05 | [23] |
Method | Extraction Yield | Compounds Obtained | References |
---|---|---|---|
SFE | 0.85% for leaves 0.17% for stems | Acids: SFE (21%-L;18%-S) PLE-EA (9%-L-S) Alcohols and phenolics: SFE-WE (~42%-L; 35%-S) PLE-WE (27%-L; 35%-S) PLE-EA (15%-L; 25%-S) Sterols: PLE-EA (16%-L-S) | [51] |
SFE (Water and ethanol) | 7.91% for leaves 6.39% for stems | ||
PLE (Water and ethanol) | 7.5–8.0% for leaves 6.3–7.8% for stems | ||
PLE (Ethyl acetate) | 3.8% leaves1.4% from stems | ||
Acid-alkali | 37% for lignin | Lignin: 98% purity Phenolics: 3.85 mmol/g | [81] |
Pyrolysis | 50.57 wt.% (Bio-oil yield) | Hydrocarbons Benzene derivatives (60%) Acids Ketones Aldehydes Phenolics | [39] |
Pyrolysis | 37–62% pyrolysis yield | Organic acids (27.2%) Phenols (7.9%) | [35] |
Pyrolysis | - | Benzene derivatives (24.46 wt.%) Organic acids; 27.3% Esters; 11.9% | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johannes, L.P.; Minh, T.T.N.; Xuan, T.D. Elephant Grass (Pennisetum purpureum): A Bioenergy Resource Overview. Biomass 2024, 4, 625-646. https://doi.org/10.3390/biomass4030034
Johannes LP, Minh TTN, Xuan TD. Elephant Grass (Pennisetum purpureum): A Bioenergy Resource Overview. Biomass. 2024; 4(3):625-646. https://doi.org/10.3390/biomass4030034
Chicago/Turabian StyleJohannes, Lovisa Panduleni, Tran Thi Ngoc Minh, and Tran Dang Xuan. 2024. "Elephant Grass (Pennisetum purpureum): A Bioenergy Resource Overview" Biomass 4, no. 3: 625-646. https://doi.org/10.3390/biomass4030034
APA StyleJohannes, L. P., Minh, T. T. N., & Xuan, T. D. (2024). Elephant Grass (Pennisetum purpureum): A Bioenergy Resource Overview. Biomass, 4(3), 625-646. https://doi.org/10.3390/biomass4030034