Optimization of Enzymatic Assisted Extraction of Bioactive Compounds from Olea europaea Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Enzyme Preparations
2.4. Enzyme-Assisted Extraction
2.5. Phytochemical Analyses
2.6. Experimental Design
2.7. Statistical Analysis
3. Results
3.1. Selection of the Mixture of Enzyme Preparations
3.2. Optimization of the Process Parameters
+ 278,661.1X13 − 0.00015X23 − 0.075X1X22 + 137.2X12X2, (mg GAE/L)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT-FAO. Statistical Database. 2016. Available online: http://www.fao.org (accessed on 2 December 2016).
- Proietti, P.; Nasini, L.; Reale, L.; Caruso, T.; Ferranti, F. Productive and vegetative behavior of olive cultivars in super high-density olive grove. Sci. Agric. 2015, 72, 20–27. [Google Scholar] [CrossRef]
- Rosello-Soto, E.; Barba, F.J.; Parniakov, O.; Galanakis, C.M.; Lebovka, N.; Grimi, N.; Vorobiev, E. High voltage electrical discharges, pulsed electric field, and ultrasound-assisted extraction of protein and phenolic compounds from olive kernel. Food Bioprocess. Tech. 2015; 8, 885–894. [Google Scholar] [CrossRef]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef]
- Cruz, R.M.; Brito, R.; Smirniotis, P.; Nikolaidou, Z.; Vieira, M.C. Extraction of Bioactive Compounds from Olive Leaves Using Emerging Technologies. In Ingredients Extraction by Physicochemical Methods in Food; Academic Press: Cambridge, MA, USA, 2017; pp. 441–461. [Google Scholar] [CrossRef]
- Bilgin, M.; Şahin, S. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. J. Taiwan Inst. Chem. Eng. 2013, 44, 8–12. [Google Scholar] [CrossRef]
- Cherng, J.M.; Shieh, D.E.; Chiang, W.; Chang, M.Y.; Chiang, L.C. Chemopreventive effects of minor dietary constituents in common foods on human cancer cells. Biosci. Biotechnol. Biochem. 2007, 71, 1500–1504. [Google Scholar] [CrossRef]
- Brahmi, F.; Mechri, B.; Dabbou, S.; Dhibi, M.; Hammami, M. The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Ind. Crops Prod. 2012, 38, 146–152. [Google Scholar] [CrossRef]
- Abaza, L.; Youssef, N.B.; Manai, H.; Haddada, F.M.; Methenni, K.; Zarrouk, M. Chétoui olive leaf extracts: Influence of the solvent type on phenolics and antioxidant activities. Grasas Aceites 2011, 62, 96–104. [Google Scholar] [CrossRef]
- Omar, S.H. Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm. J. 2010, 18, 111–121. [Google Scholar] [CrossRef]
- Zhao, G.; Yin, Z.; Dong, J. Antiviral efficacy against hepatitis B virus replication of oleuropein isolated from Jasminum officinale L. var. grandiflorum. J. Ethnopharmacol. 2009, 125, 265–268. [Google Scholar] [CrossRef]
- Rahmanian, N.; Jafari, S.M.; Wani, T.A. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci. Technol. 2015, 42, 150–172. [Google Scholar] [CrossRef]
- Odiatou, E.M.; Skaltsounis, A.L.; Constantinou, A.I. Identification of the factors responsible for the in vitro pro-oxidant and cytotoxic activities of the olive polyphenols oleuropein and hydroxytyrosol. Cancer Lett. 2013, 330, 113–121. [Google Scholar] [CrossRef]
- Gligora, O.; Mocana, A.; Moldovana, C.; Locatellib, M.; Crișana, G.; Ferreirac, I. Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends Food Sci. Technol. 2019, 88, 302–331. [Google Scholar] [CrossRef]
- Fares, R.; Bazzi, S.; Baydoun, S.E.; Abdel-Massih, R.M. The antioxidant and anti-proliferative activity of the Lebanese Olea europaea extract. Plant Foods Hum. Nutr. 2011, 66, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.; Rabii, N.S.; Garbaj, A.M.; Abolghait, S.K. Antibacterial effect of olive (Olea europaea L.) leaves extract in raw peeled undeveined shrimp (Penaeus semisulcatus). Int. J. Vet. Sci. Med. 2014, 2, 53–56. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green extraction methods for polyphenols from plant matrices and their byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Erbay, Z.; Icier, F. Optimization of Drying of Olive Leaves in a Pilot-Scale Heat Pump Dryer. Dry Technol. 2009, 27, 416–427. [Google Scholar] [CrossRef]
- Vardakas, A.; Shikov, V.; Dinkova, R.; Mihalev, K. Valorization of the enzyme-assisted extraction of polyphenols from saffron (Crocus sativus L.) tepals. Acta Sci. Pol. Technol. Aliment 2021, 20, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Dimitriou, E.; Kontakos, S.; Kontominas, M.G. Phenolic profile, colour intensity, and radical scavenging activity of Greek unifloral honeys. Eur. Food Res. Technol. 2016, 242, 1201–1210. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Sancho-Pardo, L.; Bravo, F.I.; Mulero, M.; Muguerza, B.; Arola-Arnal, A. Optimized extraction by response surface methodology used for the characterization and quantification of phenolic compounds in whole red grapes (Vitis vinifera). Nutrients 2018, 10, 1931. [Google Scholar] [CrossRef]
- Markhali, F.; Teixeira, J.; Rocha, C. Olive Tree Leaves—A Source of Valuable Active Compounds. Processes 2020, 8, 1177. [Google Scholar] [CrossRef]
- Kalcheva-Karadzhova, K.; Shikov, V.; Mihalev, K.; Dobrev, G.; Ludneva, D.; Penov, N. Enzyme-assisted extraction of polyphenols from rose (Rosa damascene Mill.) petals. Acta Univ. Cibin. Ser. E Food Technol. 2014, 18, 65–72. [Google Scholar] [CrossRef]
- Lotfi, L.; Kalbasi-Ashtari, A.; Hamedi, M.; Ghorbani, F. Effects of enzymatic extraction on anthocyanins yield of saffron tepals (Crocos sativus) along with its color properties and structural stability. J. Food Drug Anal. 2015, 23, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Tang, J.; Powers, J. Effect of Pectolytic Enzyme Preparations on the Phenolic Composition and Antioxidant Activity of Asparagus Juice. J. Agric. Food Chem. 2005, 53, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yang, H.; Capanoglu, E.; Cao, H.; Xiao, J. Technological aspects and stability of polyphenols. In Polyphenols: Properties, Recovery, and Applications; Woodhead Publishing: Cambridge, UK, 2018; pp. 295–323. [Google Scholar] [CrossRef]
- Volf, I.; Ignat, I.; Neamtu, M.; Popa, V. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem. Pap. 2014, 68, 121–129. [Google Scholar] [CrossRef]
- Mourtzinos, I.; Anastasopoulou, E.; Petrou, A.; Grigorakis, S.; Makris, D.; Biliaderis, C. Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Technol. 2016, 53, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Silveira da Rosa, G.; Vanga, S.; Gariepy, Y.; Raghavan, V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innov. Food Sci. Emerg. Technol. 2019, 58, 102234. [Google Scholar] [CrossRef]
- Kalcheva-Karadzhova, K.D.; Mihalev, K.M.; Ludneva, D.P.; Shikov, V.T.; Dinkova, R.H.; Penov, N.D. Optimizing enzymatic extraction from rose petals (Rosa damascena Mill.). Bulg. Chem. Comm. 2016, 48, 459–463. [Google Scholar]
- Chanioti, S.; Siamandoura, P.; Tzia, C. Evaluation of Extracts Prepared from Olive Oil By-Products Using Microwave-Assisted Enzymatic Extraction: Effect of Encapsulation on the Stability of Final Products. Waste Biomass Valor. 2016, 7, 831–842. [Google Scholar] [CrossRef]
- Fernández, V.; Almonte, L.; Bahamonde, H.A.; Galindo-Bernabeu, A.; Sáenz-Arce GColchero, J. Chemical and structural heterogeneity of olive leaves and their trichomes. Commun. Biol. 2024, 7, 2399–3642. [Google Scholar] [CrossRef]
Factor | Minima | Centre Point | Maxima | Axial Point. a |
---|---|---|---|---|
Enzyme dose (%E/S a)—X1 | 0.02 | 0.1 | 0.18 | −a = −1 +a = +1 |
Time (min.)—X2 | 30 | 120 | 210 | −a = −1 +a = +1 |
Yield (%) | TPP b (mg GAE/L) | DPPH c (AA %) | |
---|---|---|---|
Control (no enzyme) | 64.00 ± 3.20 a | 442.13 ± 22.11 a | 64.76 ± 3.24 a |
X1 | 62.36 ± 3.12 ab | 434.90 ± 21.74 a | 66.51 ± 3.33 a |
X2 | 63.18 ± 3.16 ac | 387.53 ± 19.38 b | 68.36 ± 3.42 a |
X3 | 66.82 ± 3.34 a | 377.63 ± 18.88 b | 70.48 ± 3.52 a |
Mix 1 (X1/X2) | 64.17 ± 3.21 a | 447.64 ± 22.38 a | 69.05 ± 3.45 a |
Mix 2 (X1/X3) | 56.90 ± 2.84 b | 465.91 ± 23.30 a | 70.32 ± 3.52 a |
Mix 3 (X2/X3) | 61.68 ± 3.08 ab | 468.19 ± 23.41 a | 69.85 ± 3.49 a |
Mix 4, 5, 6 (X1/X2/X3) | 58.19 ± 2.91 bc | 464.64 ± 23.23 a | 70.08 ± 3.50 a |
No | Coded Values | Enzyme Dose (%E/S a) | Time (min) | TPP b (mg GAE/L) | DPPH c (AA%) | Yield d, (%) | |
---|---|---|---|---|---|---|---|
X1 | X2 | Y1 | Y2 | Y3 | |||
1 | − | − | 0.02 | 30 | 553.99 a | 55.23 a | 57.13 ad |
2 | + | − | 0.18 | 30 | 495.11 b | 57.22 a | 64.98 bcg |
3 | − | + | 0.02 | 210 | 602.88 cd | 58.61 a | 57.73 ad |
4 | + | + | 0.18 | 210 | 572.06 ac | 58.33 a | 55.54 ad |
5 | − | 0 | 0.02 | 120 | 530.78 ab | 56.85 a | 61.05 dce |
6 | + | 0 | 0.18 | 120 | 582.61 ac | 57.78 a | 58.22 adf |
7 | 0 | − | 0.1 | 30 | 605.55 c | 57.31 a | 70.14 g |
8 | 0 | + | 0.1 | 210 | 510.42 ab | 58.82 a | 62.42 bef |
9 | 0 | 0 | 0.1 | 120 | 556.85 ad | 58.21 a | 65.49 bef |
10 | 0 | 0 | 0.1 | 120 | 557.44 ad | 58.22 a | 65.72 bef |
11 | 0 | 0 | 0.1 | 120 | 556.95 ad | 57.98 a | 66.12 bef |
Extraction Method | Total Polyphenol Content | Reference |
---|---|---|
Enzyme-assisted extraction | 605.55 mg GAE/L | Current study |
Microwave-assisted enzymatic extraction | 34.53 mg GAE/g | [21] |
Ethanol 80% | 54.92 mg GAE/g | [22] |
Cyclodextrins and glycerin co-solvents | 54.33 mg GAE/g | [28] |
Microwave-assisted extraction | 104.22 mg GAE/g | [29] |
Ultrasound-assisted extraction | 80.52 mg GAE/g | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vardakas, A.; Kechagias, A.; Penov, N.; Giannakas, A.E. Optimization of Enzymatic Assisted Extraction of Bioactive Compounds from Olea europaea Leaves. Biomass 2024, 4, 647-657. https://doi.org/10.3390/biomass4030035
Vardakas A, Kechagias A, Penov N, Giannakas AE. Optimization of Enzymatic Assisted Extraction of Bioactive Compounds from Olea europaea Leaves. Biomass. 2024; 4(3):647-657. https://doi.org/10.3390/biomass4030035
Chicago/Turabian StyleVardakas, Alexios, Achilleas Kechagias, Nikolay Penov, and Aris E. Giannakas. 2024. "Optimization of Enzymatic Assisted Extraction of Bioactive Compounds from Olea europaea Leaves" Biomass 4, no. 3: 647-657. https://doi.org/10.3390/biomass4030035
APA StyleVardakas, A., Kechagias, A., Penov, N., & Giannakas, A. E. (2024). Optimization of Enzymatic Assisted Extraction of Bioactive Compounds from Olea europaea Leaves. Biomass, 4(3), 647-657. https://doi.org/10.3390/biomass4030035