Oil and Biodiesel Production from Mortierella isabellina Biomass by a Direct Near-Critical Fluid Extraction and Transesterification Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Fermentation
2.3. Direct Near-Critical Fluid Extraction and Transesterification Reaction Using Ethanol
2.4. Biodiesel Conversion
2.5. Statistical Analysis
3. Results
3.1. Extraction Yield
3.2. Biodiesel Conversion
4. Discussion
- Exploring diversified feedstocks rich in glucose and fructose for fermentation, especially cooking wastes;
- Exploring subcritical or supercritical water hydrolysis of lignocellulosic biomasses to obtain low-chain sugars as nutrients for fermentation;
- Implementing an in-line and on-line monitoring system in the apparatus for extraction/transesterification to obtain real-time results for the concentration and composition of samples;
- Using artificial intelligence or other computational tools to process the collected data and predict responses in different scenarios, including those in scaled-up industrial applications.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medina-Herrera, N.; Martínez-Ávila, G.C.G.; Robledo-Jiménez, C.L.; Rojas, R.; Orozco-Zamora, B.S. From Citrus Waste to Valuable Resources: A Biorefinery Approach. Biomass 2024, 4, 784–808. [Google Scholar] [CrossRef]
- Qin, L.; Liu, L.; Zeng, A.P.; Wei, D. From low-cost substrates to single cell synthesized by oleaginous yeasts. Bioresour. Technol. 2017, 245, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Šantek, M.I.; Grubišić, M.; Perečinec, M.G.; Beluhan, S.; Šantek, B. Lipid production by Mortierella isabellina from pretreated corn cobs and effect of lignocellulose derived inhibitors on growth and lipid synthesis. Process Biochem. 2021, 109, 46–58. [Google Scholar] [CrossRef]
- Sallet, D.; Abaide, E.; Marcuz, C.; Ariotti, G.; Dal Prá, V.; Ugalde, G.; Zabot, G.L.; Mazutti, M.A.; Kuhn, R.C. Obtaining fatty acids from Mortierella isabellina using supercritical carbon dioxide and compressed liquefied petroleum gas. J. Supercrit. Fluids 2017, 122, 79–87. [Google Scholar] [CrossRef]
- Cianchetta, S.; Ceotto, E.; Galletti, S. Microbial Oil Production from Alkali Pre-Treated Giant Reed (Arundo donax L.) by Selected Fungi. Energies 2023, 16, 5398. [Google Scholar] [CrossRef]
- Alshaikh, B.N.; Loredo, A.R.; Knauff, M.; Momin, S.; Moossavi, S. The Role of Dietary Fats in the Development and Prevention of Necrotizing Enterocolitis. Nutrients 2022, 14, 145. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Zanotti, M.; Wang, X.; Ducey, C.; Liu, Y. Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour. Technol. 2012, 110, 198–205. [Google Scholar] [CrossRef]
- Su, C.H.; Nguyen, H.C.; Pham, U.K.; Nguyen, M.L.; Juan, H.Y. Biodiesel Production from a Novel Nonedible Feedstock, Soursop (Annona muricata L.) seed oil. Energies 2018, 11, 2562. [Google Scholar] [CrossRef]
- Hariram, V.; Janarthanan, M.; Paul, R.C.; Sivasankar, A.; Akram, M.W.; Sangeethkumar, E.; Ramanathan, V.; Khan, P.S.; Reddy, S.M. Biodiesel from Dunaliella salina Microalgae Using Base Catalyzed Transesterification—An Assessment through GC/MS, FTIR and NMR Studies. Nat. Environ. Pollut. Technol. 2023, 22, 1951–1960. [Google Scholar] [CrossRef]
- Chamola, R.; Khan, M.F.; Raj, A.; Verma, M.; Jain, S. Response surface methodology based optimization of in situ transesterification of dry algae with methanol, H2SO4, and NaOH. Fuel 2019, 239, 511–520. [Google Scholar] [CrossRef]
- Karatay, S.E.; Demiray, E.; Dönmez, G. Efficient approaches to convert Coniochaeta hoffmannii lipids into biodiesel by in-situ transesterification. Bioresour. Technol. 2019, 285, 121321. [Google Scholar]
- Ortiz-Martínez, V.M.; Andreo-Martínez, P.; García-Martínez, N.; Ríos, A.P.; Hernández-Fernández, F.J.; Quesada-Medina, J. Approach to biodiesel production from microalgae under supercritical conditions by the PRISMA method. Fuel Process Technol. 2019, 191, 211–222. [Google Scholar] [CrossRef]
- Tan, K.T.; Lee, K.T.; Mohamed, A.R. Effects of free fatty acids, water content and co-solvent on biodiesel production by supercritical methanol reaction. J. Supercrit. Fluids 2010, 53, 88–91. [Google Scholar] [CrossRef]
- Sallet, D.; Souza, P.O.; Fischer, L.T.; Ugalde, G.; Zabot, G.L.; Mazutti, M.A.; Kuhn, R.C. Ultrasound-assisted extraction of lipids from Mortierella isabellina. J. Food Eng. 2019, 242, 1–7. [Google Scholar] [CrossRef]
- Chañi-Paucar, L.O.; Johner, J.C.F.; Zabot, G.L.; Meireles, M.A.A. Technical and economic evaluation of supercritical CO2 extraction of oil from sucupira branca seeds. J. Supercrit. Fluids 2022, 181, 105494. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Alzate, C.A.C.; Solarte-Toro, J.C. Orange Peel Waste as a Source of Bioactive Compounds and Valuable Products: Insights Based on Chemical Composition and Biorefining. Biomass 2024, 4, 107–131. [Google Scholar] [CrossRef]
- Kusdiana, D.; Saka, S. Two-step preparation for catalyst-free biodiesel fuel production. Appl. Biochem. Biotechonol. 2004, 113, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Hegel, P.E.; Martín, L.A.; Popovich, C.A.; Damiani, C.; Leonardi, P.I. Biodiesel production from Halamphora coffeaeformis microalga oil by supercritical ethanol transesterification. Chem. Eng. Process 2019, 145, 107670. [Google Scholar] [CrossRef]
- Kanaan, A.F.; Santos, K.C.d.; Menezes, M.A.H.; Hamerski, F.; Voll, F.A.P.; Corazza, M.L. Sequential extraction of industrial spent coffee grounds using pressurized fluids as solvents. J. Supercrit. Fluids 2025, 218, 106503. [Google Scholar] [CrossRef]
- Silva, C.; Castilhos, F.; Oliveira, J.V.; Cardozo Filho, L. Continuous production of soybean biodiesel with compressed ethanol in a microtube reactor. Fuel Process Technol. 2010, 91, 1274–1281. [Google Scholar] [CrossRef]
- Supang, W.; Ngamprasertsith, S.; Sakdasri, W.; Sawangkeaw, R. Biodiesel Production from Spent Coffee Grounds by Using Ethanolic Extraction and Supercritical Transesterification. Bioenergy Res. 2024, 17, 2429–2439. [Google Scholar] [CrossRef]
- Visentainer, J.V. Analytical aspects of the fame ionization detector response of fatty acid esters in biodiesels and foods. Quim. Nova 2012, 35, 274–279. [Google Scholar] [CrossRef]
- Fang, H.; Zhao, C.; Chen, S. Single cell oil production by Mortierella isabellina from steam exploded corn stover degraded by three-stage enzymatic hydrolysis in the context of on-site enzyme production. Bioresour. Technol. 2016, 216, 988–995. [Google Scholar] [CrossRef]
- Zhao, C.; Xie, B.; Zhao, R.; Fang, H. Microbial oil production by Mortierella isabellina from sodium hydroxide pretreated rice straw degraded by three-stage enzymatic hydrolysis in the context of on-site cellulase production. Renew. Energy 2019, 130, 281–289. [Google Scholar] [CrossRef]
- Demir, M.; Gündes, A.G. Single-cell oil production by Mortierella isabellina DSM 1414 using different sugars as carbon source. Biotechnol. Progress 2020, 36, e3050. [Google Scholar] [CrossRef] [PubMed]
- Somacal, S.; Pinto, V.S.; Vendruscolo, R.G.; Somacal, S.; Wagner, R.; Ballus, C.A.; Kuhn, R.C.; Mazutti, M.A.; Menezes, C.R. Maximization of microbial oil containing polyunsaturated fatty acid production by Umbelopsis (Mortierella) isabellina. Biocatal. Agric. Biotechnol. 2020, 30, 101831. [Google Scholar] [CrossRef]
- Tonato, D.; Brun, T.; Luft, L.; Santos, M.S.N.d.; Drumm, F.C.; Grassi, P.; Georgin, J.; Kuhn, R.C.; Zabot, G.L.; Mazutti, M.A. Submerged cultivation of Nigrospora sp. in batch and fed-batch modes for microbial oil production. Nat. Prod. Res. 2024, 38, 1662–1669. [Google Scholar] [CrossRef]
- Hassan, A.A.; Alhameedi, H.A.; Smith, J.D. Two-step sub/supercritical water and ethanol processes for non-catalytic biodiesel production. Chem. Eng. Process 2020, 150, 107881. [Google Scholar] [CrossRef]
- Tobar, M.; Núnez, G.A. Supercritical transesterification of microalgae triglycerides for biodiesel production: Effect of alcohol type and co-solvent. J. Supercrit. Fluids 2018, 137, 50–56. [Google Scholar] [CrossRef]
- Anitescu, G.; Deshpande, A.; Tavlarides, L.L. Integrated technology for supercritical biodiesel production and power cogeneration. Energy Fuels 2008, 22, 1391–1399. [Google Scholar] [CrossRef]
- Shirazi, H.M.; Karimi-Sabet, J.; Ghotbi, C. Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition. Bioresour. Technol. 2017, 239, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Imahara, H.; Minami, E.; Hari, S.; Saka, S. Thermal stability of biodiesel in supercritical methanol. Fuel 2008, 87, 386–392. [Google Scholar] [CrossRef]
- Silva, C.; Colonelli, A.S.; Silva, E.A.; Cabral, V.F.; Oliveira, J.V.; Cardozo-Filho, L. Continuous catalyst-free production of esters from Jatropha curcas L. oil under supercritical ethanol. Braz. J. Chem. Eng. 2014, 31, 727–735. [Google Scholar] [CrossRef]
- Silva, C.; Weshenfelder, A.; Rovani, S.; Corazza, F.C.; Corazza, M.L.; Dariva, C.; Oliveira, J.V. Continuous Production of Fatty Acid Ethyl Esters from Soybean Oil in Compressed Ethanol. Ind. Eng. Chem. Res. 2007, 46, 5304–5309. [Google Scholar] [CrossRef]
- Levine, R.B.; Bollas, A.; Savage, P.E. Process improvements for the supercritical in situ transesterification of carbonized algal biomass. Bioresour. Technol. 2013, 136, 556–564. [Google Scholar] [CrossRef] [PubMed]
Assay | Temperature (°C) | Pressure (MPa) | S/F (g solvent/g biomass) |
---|---|---|---|
1 | 300 (+1) | 20 (+1) | 30 (+1) |
2 | 300 (+1) | 20 (+1) | 10 (−1) |
3 | 300 (+1) | 10 (−1) | 30 (+1) |
4 | 300 (+1) | 10 (−1) | 10 (−1) |
5 | 200 (−1) | 20 (+1) | 30 (+1) |
6 | 200 (−1) | 20 (+1) | 10 (−1) |
7 | 200 (−1) | 10 (−1) | 30 (+1) |
8 | 200 (−1) | 10 (−1) | 10 (−1) |
9 | 250 (0) | 15 (0) | 20 (0) |
10 | 250 (0) | 15 (0) | 20 (0) |
11 | 250 (0) | 15 (0) | 20 (0) |
Assay | Extraction Yield (wt.%) | Biodiesel Conversion (%) |
---|---|---|
1 | 55.36 | 22.17 |
2 | 32.64 | 21.99 |
3 | 41.03 | 19.33 |
4 | 34.00 | 18.67 |
5 | 25.93 | 4.20 |
6 | 9.70 | 1.45 |
7 | 24.08 | 10.27 |
8 | 10.64 | 8.34 |
9 | 46.01 | 7.19 |
10 | 44.91 | 7.83 |
11 | 43.94 | 6.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sallet, D.; Ugalde, G.A.; Tres, M.V.; Mazutti, M.A.; Zabot, G.L.; Kuhn, R.C. Oil and Biodiesel Production from Mortierella isabellina Biomass by a Direct Near-Critical Fluid Extraction and Transesterification Method. Biomass 2025, 5, 6. https://doi.org/10.3390/biomass5010006
Sallet D, Ugalde GA, Tres MV, Mazutti MA, Zabot GL, Kuhn RC. Oil and Biodiesel Production from Mortierella isabellina Biomass by a Direct Near-Critical Fluid Extraction and Transesterification Method. Biomass. 2025; 5(1):6. https://doi.org/10.3390/biomass5010006
Chicago/Turabian StyleSallet, Daniela, Gustavo Andrade Ugalde, Marcus Vinícius Tres, Marcio Antonio Mazutti, Giovani Leone Zabot, and Raquel Cristine Kuhn. 2025. "Oil and Biodiesel Production from Mortierella isabellina Biomass by a Direct Near-Critical Fluid Extraction and Transesterification Method" Biomass 5, no. 1: 6. https://doi.org/10.3390/biomass5010006
APA StyleSallet, D., Ugalde, G. A., Tres, M. V., Mazutti, M. A., Zabot, G. L., & Kuhn, R. C. (2025). Oil and Biodiesel Production from Mortierella isabellina Biomass by a Direct Near-Critical Fluid Extraction and Transesterification Method. Biomass, 5(1), 6. https://doi.org/10.3390/biomass5010006