Effects of the Chemical and Mechanical Pre-Treatment of Brown Seaweed on Biomethane Yields in a Batch Configuration
Abstract
:1. Introduction
- Seaweed has proven to be a suitable feedstock for biogas production. However, the differences in operating conditions and the differing compositions resulting from growth conditions make predicting and optimising biogas yields challenging based on previous studies performed. The macroalgae under consideration is a brown benthic seaweed found in abundance along the West Coast of South Africa (SA). Ecklonia Maxima has been collected as beach-cast seaweed since the 1950s, and harvested from the ocean floor since the 1970s [14] according to a maximum sustainability yield for the zone it is grown in. It can grow up to 15 m high and can be harvested up to 8 times per year if the frond is harvested. There is limited research on biomethane production utilising Ecklonia Maxima, as it is primarily utilised as an abalone feed and in the production of plant growth stimulants. Since 2003, approximately 6000 to 7000 tonnes per annum of Ecklonia Maxima was harvested as abalone feed alone. On a dry basis, it consists of mostly carbohydrates (25–50%), proteins (7–15%), and a small amount of lipids (1–5%), making it an ideal feedstock for biomethane production. In SA., Ecklonia Maxima has the potential to be commercially farmed, which makes it a viable alternative to land-based crops for energy production.
- The hypothesis of the research is that pre-treatment of the macroalgae will increase the biomethane yield when compared to a control sample using an anaerobic digestion process. To optimise the biogas yield from brown seaweed, this research aims to investigate the use of size reduction and chemical pre-treatment to determine its effects on the biogas yield using Ecklonia Maxima in a semi-batch configuration. The research will develop new insights into, and add to the limited data availability for the pre-treatment of Ecklonia Maxima to improve biomethane yield, and to explore the macroalgae as a viable feedstock for an industrial process for cleaner energy production.
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Feedstock Preparation and Analysis
2.2.2. Analytical Methods and Calculations
2.2.3. Anaerobic Digestion Process
2.2.4. Experimental Procedure
2.2.5. Biomass Pre-Treatment
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Seaweed Analysis and Characterisation
3.2. Calculated Variables
3.3. Methane Yields
3.4. Kinetics and Methane Yield Predictions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soleymani, M.; Rosentrater, K.A. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed). Bioengineering 2017, 4, 92. [Google Scholar] [CrossRef] [PubMed]
- Ghadiryanfar, M.; Rosentaater, K.A.; Keyhani, A.; Omid, M. A review of microalgae production, with potential applications in biofuels and bioenergy. Renew. Sustain. Energy Rev. 2016, 54, 473–481. [Google Scholar] [CrossRef]
- Clarke, B.; Otto, F.; Stuart-Smith, R.; Harrington, L. Extreme weather impacts of climate change: An attribution perspective. Environ. Res. Clim. 2022, 1, 012001. [Google Scholar] [CrossRef]
- Florentinus, A.; Harmelinck, C.; Lint, S.D.; Iersel, S.V. Worldwide Potential of Aquatic Biomass; Ecofys: Utrecht, The Netherlands, 2014; Available online: https://edepot.wur.nl/212309 (accessed on 20 November 2024).
- Obata, O.; Ditchfield, A.; Hatton, A.; Akunna, J. Investigating the impact of inoculum source on anaerobic digestion of various species of marine macroalgae. Algal Res. 2020, 46, 101803. [Google Scholar] [CrossRef]
- Romero-Vargas, A.; Munos, I.; Marco, C.; Dias, A.B.; Romero-Garcia, L.L.; Blandino, A. Ultrasound pretreatment to enhance the enzymatic hydrolysis of Dictyota dichotoma for sugars production. Algal Res. 2022, 71, 103083. [Google Scholar] [CrossRef]
- Tabassum, M.R.; Xia, A.; Murphy, J.D. Biomethane production from various segments of brown seaweed. Energy Convers. Manag. 2018, 174, 855–862. [Google Scholar] [CrossRef]
- Akunna, J.C.; Hierholtzer, A. Co-digestion of terrestrial plant biomass with marine macro-algae for biogas production. Biomass Bioenergy 2016, 93, 137–143. [Google Scholar] [CrossRef]
- Vanegas, C.H.; Bartlett, J. Green energy from marine algae: Biogas production and composition from the anaerobic digestion of Irish seaweed species. Environ. Technol. 2013, 15, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Maneein, S.; Milledge, J.; Van Nielsen, B.; Harvey, P.J. A review of seaweed pre-treatment mrthods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation 2018, 4, 100. [Google Scholar] [CrossRef]
- Hessami, M.J.; Phang, S.M.; Sohrabipoor, J.; Zafar, F.F.; Aslanzadeh, S. The bio-methane potential of whole plant and solid residues of two species of red seaweeds: Gracilaria manilaensis and Gracilariopsis persica. Algal Res. 2019, 42, 101581. [Google Scholar] [CrossRef]
- Kumar, R.; Kim, T.H.; Basak, B.; Patil, S.M.; Kim, H.H.; An, Y.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Jeon, B. Emerging approaches in lignocellulosic biomass pretreatment and aaerobic bioprocesses for sustainable biofuels production. J. Clean. Prod. 2022, 333, 130180. [Google Scholar] [CrossRef]
- Thompson, T.M.; Young, B.R.; Baroutian, S. Advances in the pretreatment of brown macroalgae for biogas production. Fuel Process. Technol. 2019, 195, 106151. [Google Scholar] [CrossRef]
- Anderson, R.J.; Stegenga, H.; Bolton, J.J. Seaweeds of the South African South Coast. 2016. Available online: http://southafrseaweeds.act.ac.za (accessed on 20 November 2024).
- Kirk, T.K.; Obst, J.R. Isolation of lignin. Methods Enzymol. 1988, 166, 87–101. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Method 1684. Total, Fixed, and Volatile Solids in Water, Solids and Biosolids. EPA-821-R-01-015. 2001. Available online: https://www.epa.gov/sites/default/files/2015-10/documents/method_1684_draft_2001.pdf (accessed on 20 November 2024).
- Achinas, S.; Euverink, G.J.W. Theoretical analysis of biogas potential prediction from agricultural waste. Resour.-Effic. Technol. 2016, 2, 143–147. [Google Scholar] [CrossRef]
- Lymperatou, A.; Engelsen, T.K.; Skiadas, J.V.; Gavala, H.N. Different pretreatments of beach-cast seaweed for biogas production. J. Clean. Prod. 2022, 362, 132277. [Google Scholar] [CrossRef]
- Milledge, J.; Harvey, P. Anaerobic digestion and gasification of seaweed. In Grnd Chall in Mari Biotech; Rampelotto, P.H., Trincone, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-69075-9. [Google Scholar] [CrossRef]
- Sawyer, N.; Trois, C.; Workneh, T.; Okudoh, V. An overview of biogas production: Fundamentals, applications and future research. Int. J. Energy Econ. Policy 2019, 9, 105–116. [Google Scholar] [CrossRef]
- Darko, C.N.S.; Agyei-Tuffour, B.; Fakye, D.F.; Goosen, N.J.; Nyankson, E.; Dodoo-Arhin, D. Biomethane production from residual algae biomass (Ecklonia Maxima): Effects of inoculum acclimatization on yield. Water Biomass Valorization 2021, 13, 497–509. [Google Scholar] [CrossRef]
- Sheppard, E.J.; Hurd, C.L.; Britton, D.D.; Reed, D.C.; Bach, L.T. Seaweed biogeochemistry: Global assessment of C:N and C:P ratios and implications for ocean afforestation. J. Phycol. 2023, 59, 879–892. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, K.; Mamat, R.; Samykano, M.; Azmi, W.H.; Ishak, W.F.W.; Talal, Y. An overview of marine macroalgae as bioresource. Renew. Sustain. Energy Rev. 2018, 91, 165–179. [Google Scholar] [CrossRef]
- Myszograj, S.; Stadnik, A.; Pluciennik-Koropczuk, E. The influence of trace elements on anaerobic digestion process. Civ. Environ. Eng. Rep. 2018, 28, 105–115. [Google Scholar] [CrossRef]
- Rabemanolontsoa, H.; Sake, S. Comparative study on chemical composition of various biomass species. RSC Adv. 2013, 3, 3946. [Google Scholar] [CrossRef]
- Milledge, J.J.; Nielsen, B.V.; Maneein, S.; Harvey, P.J. A brief review of anaerobic digestion of algae for bioenergy. Energies 2019, 12, 1166. [Google Scholar] [CrossRef]
- Farghali, M.; Yuhendra, A.P.; Mohamed, I.M.A.; Iwasaki, M.; Tangtaweewipat, S.; Ihara, I.; Sakai, R.; Umetsu, K. Thermophilic anaerobic digestion of Sargassum fulvellum macroalgae: Biomass valorization and biogas optimization under different pre-treatment conditions. J. Environ. Chem. Eng. 2021, 9, 106405. [Google Scholar] [CrossRef]
- Lesteur, M.; Ellon-Maurel, V.; Gonzalez, C.; Latrille, E.; Roger, J.M.; Junqua, G.; Steyer, J.P. Alternative methods for determining anaerobic biodegradability: A review. Proc. Biochem. 2010, 45, 431–440. [Google Scholar] [CrossRef]
- Cho, C.; Li, R.; Wang, S.Y.; Yoon, J.H.; Gillies, R.R. Anthropogenic footprint of climate change in the June 2013 northern India flood. Clim. Dyn. 2016, 46, 797–805. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Liu, W.; Zou, S. Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresour. Technol. 2012, 123, 189–194. [Google Scholar] [CrossRef]
- Montingelli, M.E.; Benyounis, K.Y.; Stokes, J.; Olabi, A.G. Pretreatment of macroalgal biomass for biogas production. Energy Convers. Manag. 2016, 108, 202–209. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Heiske, S. Anaerobic digestion of macroalgae: Methane potentials, pre-treatment, inhibition and co-digestion. Water Sci. Technol. 2011, 64, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Bourgougnon, N.; Lanoiselle, J.-L.; Lendormi, T. Biofuel production from seaweeds: A comprehensive review. Energies 2022, 15, 9395. [Google Scholar] [CrossRef]
- Tedesco, S.; Barroso, T.M.; Olabi, A.G. Optimization of mechanical pre-treatment of Laminariaceae spp. Biomass-derived biogas. Renew. Energy 2014, 62, 527–534. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; El-Hassan, Z.; Olabi, A.G. Improvement of methane production from P. cnaliculata through mechanical pretreatment. Renew. Energy 2018, 119, 73–78. [Google Scholar] [CrossRef]
- Thakur, N.; Salama, E.-S.; Sharma, M.; Sharma, P.; Sharma, D.; Li, X. Efficient utilization and management of seaweed bioimass for biogas production. Mater. Today Sustain. 2022, 18, 100120. [Google Scholar] [CrossRef]
- Montingelli, M.E.; Benyounis, K.Y.; Stokes, J.; Quilty, B.; Olabi, A.G. Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production. Energy 2017, 118, 1079–1089. [Google Scholar] [CrossRef]
- Oliveira, J.V.; Alves, M.M.; Costa, J.C. Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresour. Technol. 2014, 162, 323–330. [Google Scholar] [CrossRef]
- Jung, H.; Baek, G.; Kim, J.; Shin, S.G.; Lee, C. Mild-temperature thermochemical pretreatment of greenmacroalgal biomass: Effects on solubilization, methanation, and microbial community structure. Bioresour. Technol. 2016, 199, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Yahmed, N.B.; Carrere, H.; Marzouki, M.N.; Smaali, I. Enhancement of biogas production from Ulva sp. by using solid-state fermentation as biological pretreatment. Algal Res. 2017, 27, 206–214. [Google Scholar] [CrossRef]
- Jard, G.; Dumas, C.; Delgenes, J.P.; Marfaing, H.; Sialve, B.; Steyer, J.P.; Carrère, H. Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochem. Eng. J. 2013, 79, 253–258. [Google Scholar] [CrossRef]
- Vanegas, C.H.; Hernon, A.; Bartlett, J. Enzymatic and organic acid pretreatment of seaweed: Effect on reducing sugars production and on biogas inhibition. Int. J. Ambient Energy 2015, 36, 2–7. [Google Scholar] [CrossRef]
- Nikolaison, L.; Dahl, J.; Bech, K.S.; Bruhn, A.; Rasmussen, M.B.; Bjerre, A.B.; Nielsen, H.B.; Ambus, P.; Rost, K.A.; Kadar, Z. 2012 Energy production from macroalgae. In Proceedings of the 20th European Biomass Conference, Milan, Italy, 18–22 June 2012. [Google Scholar]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Budiyano; Widiasa, I.N.; Johari, S.; Sunarso, S. Increasing biogas production rate from cattle manure using rumen fluid as inoculum. Int. J. Sci. Eng. 2014, 6, 31–38. [Google Scholar]
- Bahira, B.Y.; Baki, A.S.; Bello, A. Effect of varying pH on biogas generation using cow dung. J. Biol. Biotech. 2018, 4, 28–33. [Google Scholar] [CrossRef]
Elemental Composition | Organic Analysis | ||
---|---|---|---|
Element | Mass % (m/m) | Component | Mass % (m/m) |
C | 51.15 | Protein | 12.01% |
H | 19.99 | Carbohydrate | 51.83% |
O | 3.789 | Ash | 25.52% |
N | 4.719 | ||
S | 11.512 |
Seaweed | Biodegradability Index |
---|---|
Control | 0.145 |
Mechanical (<1.7 mm particle size) | 0.580 |
Mechanical (1.7–3 mm particle size) | 0.243 |
Acid (0.15 M HCl) | 0.278 |
Acid (0.3 M HCl) | 0.190 |
Alkaline (0.15 M NaOH) | 0.159 |
Alkaline (0.3 M NaOH) | 0.260 |
Substrate | Methane Yield (mL/g VS) | % Change in Methane Yield | % of Theoretical Methane Yield |
---|---|---|---|
Untreated (control) | 31.54 | - | 14.51 |
Mechanical (<1.7 mm particle size) | 126.16 | +300 | 58.07 |
Mechanical (1.7–3 mm particle size) | 52.74 | +67.2 | 24.28 |
Acid (0.15 M HCl) | 60.33 | +91.28 | 27.77 |
Acid (0.3 M HCl) | 41.30 | +30.94 | 19.01 |
Alkaline (0.15 M NaOH) | 34.59 | +9.67 | 15.92 |
Alkaline (0.3 M NaOH) | 56.53 | +79.23 | 26.02 |
Feedstock | Pre-Treatment | Methane Yield (% Change) | Reference |
---|---|---|---|
Mechanical Pre-Treatment | |||
Ulva Lactuca | Maceration | - | [31] |
Maceration (washed) | +67.7% | [32] | |
Maceration | +32% | [33] | |
Saccharina Latissima | Maceration | −2.1% | [32] |
P. canaliculata | Beaten | +74% | [35] |
Beaten | +179% | [13] | |
Beaten | +70% | [36] | |
Laminaria spp. | Beaten | +53% | [34] |
Ball milled; particle size 1–2 mm | −26.5% | [31] | |
Beaten—harvested Nov 2013 | +2.1% | [31] | |
Beaten—harvested May 2014 | +8.6% | [37] | |
Gracilaria gracilis | Beaten | +52% | [33] |
G vermiculophylla | Maceration—unwashed | +14.6% | [38] |
Maceration—washed | +11.9% | [38] | |
Maceration—washed and dried | +7.7% | [38] | |
Maceration—washed | +11.4% | [32] | |
F. vesiculosus | Chopped; washed | +95% | [36] |
+220% | [13] | ||
Ulva spp. | Grinding | +18% | [33] |
Chemical Pre-treatment | |||
Ulva spp. | 0.1 M HCl at 90 °C | +12.7% | [39] |
0.04 g HCL/g TS at 150 °C | +12.1% | [40] | |
0.1 M NaOH @ 90 °C | −0.7% | [39] | |
0.04 g NaOH/g TS at 20 °C | −41.7% | [40] | |
P. palmata | 0.04 g NaOH/g TS at 160 °C | −8.4% | [41] |
L. digitata | 2.5% citric acid | +3.9% | [42] |
2.5% citric acid | +4% | [13] | |
6% citric acid | −69.7% | [42] | |
6% citric acid | −330% | [13] | |
G. vermiculophylla | 0.05 g NaOH/g seaweed at 90 °C | −21% | [39] |
ANOVA | ||||||
---|---|---|---|---|---|---|
Source of Variation | SS | df | MS | F | p-Value | F Crit |
Between Groups | 5934.29 | 6 | 989.048 | 1.319 | 0.2662 | 2.290 |
Within Groups | 36,719.48 | 49 | 749.377 | |||
Total | 42,653.77 | 55 |
Seaweed | Bo (mL/g VS) | % Theoretical CH4 | k (-Day) | R2 |
---|---|---|---|---|
Control | 31.537 | 14.51 | 0.050407 | 81.59 |
Size < 1.7 mm | 126.157 | 58.07 | 0.10615 | 89.62 |
Size 1.7–3 mm | 52.740 | 24.28 | 0.073578 | 89.54 |
Acid pre-treated 0.15 M HCL | 60.325 | 27.77 | 0.080572 | 92.69 |
Acid pre-treated 0.3 M HCl | 41.3 | 19.01 | 0.062585 | 91.73 |
Alkaline pre-treated 0.15 M NaOH | 56.533 | 15.92 | 0.056908 | 86.04 |
Alkaline pre-treated 0.3 M NaOH | 52.740 | 26.02 | 0.073071 | 90.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marshall, A.; Oyekola, O. Effects of the Chemical and Mechanical Pre-Treatment of Brown Seaweed on Biomethane Yields in a Batch Configuration. Biomass 2025, 5, 7. https://doi.org/10.3390/biomass5010007
Marshall A, Oyekola O. Effects of the Chemical and Mechanical Pre-Treatment of Brown Seaweed on Biomethane Yields in a Batch Configuration. Biomass. 2025; 5(1):7. https://doi.org/10.3390/biomass5010007
Chicago/Turabian StyleMarshall, Ashleen, and Oluwaseun Oyekola. 2025. "Effects of the Chemical and Mechanical Pre-Treatment of Brown Seaweed on Biomethane Yields in a Batch Configuration" Biomass 5, no. 1: 7. https://doi.org/10.3390/biomass5010007
APA StyleMarshall, A., & Oyekola, O. (2025). Effects of the Chemical and Mechanical Pre-Treatment of Brown Seaweed on Biomethane Yields in a Batch Configuration. Biomass, 5(1), 7. https://doi.org/10.3390/biomass5010007