Low-Density Polyethylene Migration from Food Packaging on Cured Meat Products Detected by Micro-Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Experiment Preparation
2.2. Data Acquisition
LabRAM HR Raman Microscope Instrument Description and Acquisition Settings
2.3. Data Processing and Analysis
2.3.1. Raman Spectral References
2.3.2. Spectra Processing and Analysis
Raman Spectra Processing and Analysis
3. Results and Discussion
3.1. Raman Spectroscopic Analysis
3.1.1. Consistency/Repeatability Tests
3.1.2. LDPE Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pironti, C.; Ricciardi, M.; Motta, O.; Miele, Y.; Proto, A.; Montano, L. Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects. Toxics 2021, 9, 224. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Olga, V.; Xue, Y.; Lv, S.; Diao, X.; Zhang, Y.; Han, Q.; Zhou, H. The potential effects of microplastic pollution on human digestive tract cells. Chemosphere 2022, 291, 132714. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhang, J.; Wang, W.; Gonzalez-Gil, G.; Vrouwenvelder, J.S.; Li, Z. Effects of nano- and microplastics on kidney: Physicochemical properties, bioaccumulation, oxidative stress and immunoreaction. Chemosphere 2022, 288, 132631. [Google Scholar] [CrossRef] [PubMed]
- Gouin, T.; Ellis-Hutchings, R.; Hampton, L.M.T.; Lemieux, C.L.; Wright, S.L. Screening and prioritization of nano- and microplastic particle toxicity studies for evaluating human health risks—Development and application of a toxicity study assessment tool. Microplastics Nanoplastics 2022, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- POMA. Advantages and Disadvantages of Plastic Packaging. Available online: http://poma.com.vn/en/advantages-and-disadvantages-of-plastic-packaging/ (accessed on 1 May 2022).
- Cruz, R.M.S.; Rico, B.P.M.; Vieira, M.C. 9—Food Packaging and Migration. In Food Quality and Shelf Life; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 281–301. [Google Scholar] [CrossRef]
- PACKCON.org. Polymers In Food Packaging. Available online: http://packcon.org/index.php/en/articles/102-2016/192-polymers-in-food-packaging (accessed on 1 May 2022).
- Dey, A.; Dhumal, C.V.; Sengupta, P.; Kumar, A.; Pramanik, N.K.; Alam, T. Challenges and possible solutions to mitigate the problems of single-use plastics used for packaging food items: A review. J. Food Sci. Tech. Mys. 2020, 58, 3251–3269. [Google Scholar] [CrossRef]
- Din, M.I.; Ghaffar, T.; Najeeb, J.; Hussain, Z.; Khalid, R.; Zahid, H. Potential perspectives of biodegradable plastics for food packaging application-review of properties and recent developments. Food Addit. Contam. Part A 2020, 37, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.; Moran, F.; Jaiswal, A.K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 2021, 283, 125263. [Google Scholar] [CrossRef]
- Yates, J.; Deeney, M.; White, H.; Joy, E.; Kalamatianou, S.; Kadiyala, S. PROTOCOL: Plastics in the food system: Human health, economic and environmental impacts. A scoping review. Campbell Syst. Rev. 2019, 15, e1033. [Google Scholar] [CrossRef]
- Machinery, K.P. Sausage Packaging Solution. Available online: https://kbtfoodpack.com/food-related-technology/sausage-packaging-solution/ (accessed on 12 May 2022).
- Robertson, G.L. Food Packaging Principles and Practice, 2nd ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Crompton, T.R. Additive Migration from Plastics into Food, 1st ed.; Shawbury, S., Ed.; Smithers Rapra Technology Limited: Shropshire, UK, 2007. [Google Scholar]
- Scientific, T.F. Low Density Polyethylene (LDPE) Labware. Available online: https://www.thermofisher.com/gr/en/home/life-science/lab-plasticware-supplies/plastic-material-selection/low-density-polyethylene-ldpe-labware.html (accessed on 23 June 2022).
- Vitali, C.; Peters, R.; Janssen, H.-G.; Nielen, M.W. Microplastics and nanoplastics in food, water, and beverages; part I. Occurrence. TrAC Trends Anal. Chem. 2022, 116670. [Google Scholar] [CrossRef]
- El-Ziney, M.G. Migration Levels of Monostyrene from Polystyrene Containers to Dairy Products. MOJ Food Process. Technol. 2016, 3, 267–271. [Google Scholar] [CrossRef]
- Yakes, B.J.; Moskowitz, J.; Crump, E.; Ellsworth, Z.; Carlos, K.; Begley, T. Evaluation of portable vibrational spectroscopy for identifying plasticizers in dairy tubing. Food Addit. Contam. A 2022, 39, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Armendáriz, C.; Alejandro-Vega, S.; Paz-Montelongo, S.; Gutiérrez-Fernández, J.; Carrascosa-Iruzubieta, C.J.; la Torre, A.H.-D. Microplastics as Emerging Food Contaminants: A Challenge for Food Safety. Int. J. Environ. Res. Public Health 2022, 19, 1174. [Google Scholar] [CrossRef]
- Guerreiro, T.M.; de Oliveira, D.N.; Melo, C.F.O.R.; Lima, E.D.O.; Catharino, R.R. Migration from plastic packaging into meat. Food Res. Int. 2018, 109, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulou, D.; Achilias, D.S.; Paraskevopoulou, A. Migration of styrene from plastic packaging based on polystyrene into food simulants. Polym. Int. 2012, 61, 141–148. [Google Scholar] [CrossRef]
- Simon, P.; Chaudhry, Q.; Bakos, D. Migration of engineered nanoparticles from polymer packaging to food—A physicochemical view. J. Food Nutr. Res. 2008, 47, 105. [Google Scholar]
- Ščetar, M.; Daniloski, D.; Tinjić, M.; Kurek, M.; Galić, K. Effect of Ultrasound Treatment on Barrier Changes of Polymers before and after Exposure to Food Simulants. Polymers 2022, 14, 990. [Google Scholar] [CrossRef]
- Fasihnia, S.H.; Peighambardoust, S.H.; Oromiehie, A.; Soltanzadeh, M.; Peressini, D. Migration analysis, antioxidant, and mechanical characterization of polypropylene-based active food packaging films loaded with BHA, BHT, and TBHQ. J. Food Sci. 2020, 85, 2317–2328. [Google Scholar] [CrossRef]
- Castle, L.; Mayo, A.; Crews, C.; Gilbert, J. Migration of Poly(ethylene terephthalate) (PET) Oligomers from PET Plastics into Foods during Microwave and Conventional Cooking and into Bottled Beverages. J. Food Prot. 1989, 52, 337–342. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weberb, R.; Iacovidoua, E.; Purnella, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Wang, Q.; Storm, B.K. Migration Study of Polypropylene (PP) Oil Blends in Food Simulants. Macromol. Symp. 2006, 242, 307–314. [Google Scholar] [CrossRef]
- Huang, Y.; Chapman, J.; Deng, Y.; Cozzolino, D. Rapid measurement of microplastic contamination in chicken meat by mid infrared spectroscopy and chemometrics: A feasibility study. Food Control 2020, 113, 107187. [Google Scholar] [CrossRef]
- Kumar, B.V.; Löschel, L.A.; Imhof, H.K.; Löder, M.G.; Laforsch, C. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ. Pollut. 2021, 269, 116147. [Google Scholar] [CrossRef] [PubMed]
- Tympa, L.-E.; Katsara, K.; Moschou, P.; Kenanakis, G.; Papadakis, V. Do Microplastics Enter Our Food Chain Via Root Vegetables? A Raman Based Spectroscopic Study on Raphanus sativus. Materials 2021, 14, 2329. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xue, Q.; Bai, H.; Wang, N. Design of a confocal micro-Raman spectroscopy system and research on microplastics detection. Appl. Opt. 2021, 60, 8375–8383. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Fraser-Miller, S.J.; Jessep, W.T.; Bain, W.E.; Hicks, T.M.; Ward, J.F.; Craigie, C.R.; Loeffen, M.; Gordon, K.C. Rapid discrimination of intact beef, venison and lamb meat using Raman spectroscopy. Food Chem. 2021, 343, 128441. [Google Scholar] [CrossRef] [PubMed]
- Katsara, K.; Kenanakis, G.; Viskadourakis, Z.; Papadakis, V. Polyethylene Migration from Food Packaging on Cheese Detected by Raman and Infrared (ATR/FT-IR) Spectroscopy. Materials 2021, 14, 3872. [Google Scholar] [CrossRef]
- Kris Gunnars, H. Is Bacon Bad for You, or Good? The Salty, Crunchy Truth. Available online: https://www.healthline.com/nutrition/is-bacon-bad-or-good (accessed on 16 May 2022).
- Saldaña, E.; Siche, R.; Pinto, J.S.D.S.; de Almeida, M.A.; Selani, M.M.; Rios-Mera, J.; Contreras-Castillo, C.J. Optimization of lipid profile and hardness of low-fat mortadella following a sequential strategy of experimental design. J. Food Sci. Technol. 2018, 55, 811–820. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Spizzirri, U.G.; Bonesi, M.; Tundis, R.; Picci, N.; Restuccia, D. Influence of packaging conditions on biogenic amines and fatty acids evolution during 15 months storage of a typical spreadable salami (’Nduja). Food Chem. 2016, 213, 115–122. [Google Scholar] [CrossRef]
- Pour, S.O.; Fowler, S.M.; Hopkins, D.L.; Torley, P.J.; Gill, H.; Blanch, E.W. Investigation of chemical composition of meat using spatially off-set Raman spectroscopy. Analyst 2019, 144, 2618–2627. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Herrero, A. Development of Meat Products with Healthier Lipid Content: Vibrational Spectroscopy. Foods 2021, 10, 341. [Google Scholar] [CrossRef]
- Robert, C.; Jessep, W.; Sutton, J.J.; Hicks, T.M.; Loeffen, M.; Farouk, M.; Ward, J.F.; Bain, W.E.; Craigie, C.R.; Fraser-Miller, S.J.; et al. Evaluating low- mid- and high-level fusion strategies for combining Raman and infrared spectroscopy for quality assessment of red meat. Food Chem. 2021, 361, 130154. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Ben-Amotz, D.; Yang, Z.; Han, L.; Liu, X. Complementarity of FT-IR and Raman spectroscopies for the species discrimination of meat and bone meals related to lipid molecular profiles. Food Chem. 2021, 345, 128754. [Google Scholar] [CrossRef]
- Okoń, A.; Szymański, P.; Zielińska, D.; Szydłowska, A.; Siekierko, U.; Kołożyn-Krajewska, D.; Dolatowski, Z.J. The Influence of Acid Whey on the Lipid Composition and Oxidative Stability of Organic Uncured Fermented Bacon after Production and during Chilling Storage. Antioxidants 2021, 10, 1711. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiong, Q.; Zhou, H.; Xu, B.; Sun, Y. Analysis of Microbial Diversity and Dynamics During Bacon Storage Inoculated with Potential Spoilage Bacteria by High-Throughput Sequencing. Front. Microbiol. 2021, 12, 713513. [Google Scholar] [CrossRef]
- Połka, J.; Rebecchi, A.; Pisacane, V.; Morelli, L.; Puglisi, E. Bacterial diversity in typical Italian salami at different ripening stages as revealed by high-throughput sequencing of 16S rRNA amplicons. Food Microbiol. 2015, 46, 342–356. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Ye, H.; Wang, Z.; Wu, X.; Han, Y.; Xu, B. Changes in the microbial communities in vacuum-packaged smoked bacon during storage. Food Microbiol. 2019, 77, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Junior, A.C.D.S.; de Oliveira, R.F.; Henry, F.D.C.; Junior, J.D.A.M.; Moulin, M.M.; Della Lucia, S.M.; Quirino, C.R.; Martins, M.L.L.; Rampe, M.C.C. Physicochemical composition, lipid oxidation, and microbiological quality of ram mortadella supplemented with Smallanthus sonchifolius meal. Food Sci. Nutr. 2020, 8, 5953–5961. [Google Scholar] [CrossRef]
No | LDPE Major Raman Peaks (cm−1) | Raman Peak Assignments Found in Meat Studies (cm−1) |
---|---|---|
1 | 1056 | 1056 → it does not exist in meat samples
1064 → v(C–C) of lipids [37] |
2 | 1123 | 1123 → it does not exist in meat samples
1129 → Proteins, lipids, ν(C–N), ν(C–C) [37] |
3 | 1164 | 1164 → it does not exist in meat samples
1171 → Proteins, ν(C–N), ν(C–C) [37] |
4 | 1290 | 1297 → Amide III, protein α–helix [37] 1225–1350 → Amide III vibrational modes [38] |
5 | 1363 | 1363 → it does not exist in meat samples |
6 | 1411 | 1411 → it does not exist in meat samples |
7 | 1435 | 1435 → it does not exist in meat samples
1443 → CH2 twisting modes of lipids [38], scissoring mode of methylene δ(CH2) in fats [37] |
8 | 1453 | 1451 → CH2 and CH3 bending vibration in lipids and protein [39] 1449 → Proteins, lipids, δ(CH2, CH3) [37] |
9 | 2718 | 2718 → it does not exist in meat samples |
10 | 2844 | 2850 → CH2 symmetric stretching motion of lipids [38] 2950~2800 → C–H (CH2 and CH3) stretching vibrations of lipids [40] |
11 | 2879 | 2950~2800 → C–H (CH2 and CH3) stretching vibrations of lipids [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsara, K.; Kenanakis, G.; Alissandrakis, E.; Papadakis, V.M. Low-Density Polyethylene Migration from Food Packaging on Cured Meat Products Detected by Micro-Raman Spectroscopy. Microplastics 2022, 1, 428-439. https://doi.org/10.3390/microplastics1030031
Katsara K, Kenanakis G, Alissandrakis E, Papadakis VM. Low-Density Polyethylene Migration from Food Packaging on Cured Meat Products Detected by Micro-Raman Spectroscopy. Microplastics. 2022; 1(3):428-439. https://doi.org/10.3390/microplastics1030031
Chicago/Turabian StyleKatsara, Klytaimnistra, George Kenanakis, Eleftherios Alissandrakis, and Vassilis M. Papadakis. 2022. "Low-Density Polyethylene Migration from Food Packaging on Cured Meat Products Detected by Micro-Raman Spectroscopy" Microplastics 1, no. 3: 428-439. https://doi.org/10.3390/microplastics1030031
APA StyleKatsara, K., Kenanakis, G., Alissandrakis, E., & Papadakis, V. M. (2022). Low-Density Polyethylene Migration from Food Packaging on Cured Meat Products Detected by Micro-Raman Spectroscopy. Microplastics, 1(3), 428-439. https://doi.org/10.3390/microplastics1030031