Recent Advances in Microplastics Removal from Water with Special Attention Given to Photocatalytic Degradation: Review of Scientific Research
Abstract
:1. Introduction
2. Physical and Advanced Methods
2.1. Physical Methods
2.1.1. Filtration
- Advantages:
- -
- Versatility since it can be applied to various water sources, including wastewater treatment plants and drinking water treatment systems, and it can be adapted and customized to suit different scales and requirements;
- -
- Existing Infrastructure: Filtration can be integrated into existing water treatment infrastructure, making it a feasible option for retrofitting or upgrading existing systems to address microplastic contamination;
- -
- Physical Barrier: Filtration provides a physical barrier that can efficiently separate microplastics from water without the need for chemical additives or complex processes. This simplicity can make it a cost-effective and reliable method.
- Disadvantages:
- -
- Size Limitations: While filtration can capture a wide range of microplastics, the efficiency may vary depending on the size of the particles. Extremely small microplastics or nanoplastics may pass through certain filters, requiring additional treatment or the use of specialized filter media;
- -
- Filter Clogging: continuous filtration of water containing high concentrations of microplastics can lead to clogging of filters. Regular maintenance and cleaning of filters may be necessary to ensure optimal performance and prevent system disruptions;
- -
- Limited Removal of Dissolved Microplastics: Filtration is primarily effective in removing larger microplastic particles, but it may not be as efficient in removing dissolved microplastics or nanoplastics, which are microscopic in size and dispersed within the water,
- -
- Cost and Energy Requirements: Filtration systems, especially those designed to handle large volumes of water, can require significant initial investment and ongoing operational costs. Additionally, the energy required to maintain the flow rate through the filters should be considered. Disposal of Captured Microplastics: Proper disposal of the captured microplastics from the filters is a challenge. The collected microplastics may need to be managed and disposed of appropriately to prevent their re-entry into the environment.
2.1.2. Sedimentation
- Advantages:
- Disadvantages:
2.1.3. Centrifugation
- Advantages:
- Disadvantages:
2.1.4. Electrocoagulation
- Advantages:
- Disadvantages:
2.2. Advanced Treatment Methods
2.2.1. Membrane Technologies
- Advantages:
- Disadvantages:
2.2.2. Biological Treatment
- Advantages:
- Disadvantages:
2.2.3. Adsorption
- Advantages:
- Disadvantages:
2.2.4. Advanced Oxidation Processes (AOPs)
- Photocatalysis
- Electrochemical Oxidation
- Fenton and Photo-Fenton Processes
- Plasma Treatment
3. A Review of Photocatalytic Systems: Exploring Catalysts, Reactive Species, and Influencing Factors in MP Degradation
Photocatalysts | MPs | Conditions | Degradation Efficiency (%) | Ref. | |
---|---|---|---|---|---|
TiO2 | LDPE film |
|
| [57] | |
|
| ||||
|
| ||||
|
| ||||
PS | 400 nm-PS UV-light 12 h 254 nm Solid phase | TXT-TiO2 |
| [63] | |
ET-TiO2 |
| ||||
WT-TiO2 |
| ||||
TiO2 | UV-light 24 h 254 nm TXT-TiO2 | 700 nm |
| ||
1000 nm |
| ||||
5000 nm Solid phase |
| ||||
5000 nmLiquid phase |
| ||||
PE | UV-light, 254 nm, 36 h TXT-TiO2 |
| |||
Particle size: 100–150 nm 4 h under UV irradiation |
| [64] | |||
Ag/TiO2 |
| ||||
Ag/TiO2-RGO |
| ||||
Ag/TiO2 |
|
|
| [65] | |
|
| ||||
|
| ||||
N-doped TiO2 | PET |
|
| [66] |
3.1. Bare TiO2
3.2. Modified TiO2
3.3. Bare ZnO
3.4. Modified ZnO
3.5. Other Photocatalysts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambert, S. (Ed.) Provocative Plastics Their Value in Design and Material Culture; Palgrave Macmillan: Cham, Switzerland, 2021; ISBN 978-3-030-55882-6. [Google Scholar]
- Hossain, S.; Rahman, M.A.; Chowdhury, M.A.; Mohonta, S.K. Plastic Pollution in Bangladesh: A Review on Current Status Emphasizing the Impacts on Environment and Public Health. Environ. Eng. Res. 2021, 26, 200535. [Google Scholar] [CrossRef]
- Rosato, D.V. Plastics End Use Application Fundamentals. In Plastics End. Use Applications; SpringerBriefs in Applied Sciences and Technology; Springer: New York, NY, USA, 2011; pp. 11–18. [Google Scholar] [CrossRef]
- Besseling, E.; Quik, J.T.K.; Sun, M.; Koelmans, A.A. Fate of Nano- and Microplastic in Freshwater Systems: A Modeling Study. Environ. Pollut. 2017, 220, 540–548. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in Freshwaters and Drinking Water: Critical Review and Assessment of Data Quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Zhou, L.; Duan, X.; Sun, H.; Ao, Z.; Wang, S. Degradation of Cosmetic Microplastics via Functionalized Carbon Nanosprings. Matter 2019, 1, 745–758. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Streit-Bianchi, M.; Cimadevila, M.; Trettnak, W. (Eds.) Mare Plasticum—The Plastic Sea Combatting Plastic Pollution through Science and Art; Springer: Cham, Switzerland, 2020; ISBN 978-3-030-38944-4. [Google Scholar]
- Zhang, Q.; He, Y.; Cheng, R.; Li, Q.; Qian, Z.; Lin, X. Recent Advances in Toxicological Research and Potential Health Impact of Microplastics and Nanoplastics in Vivo. Environ. Sci. Pollut. Res. 2022, 29, 40415–40448. [Google Scholar] [CrossRef]
- Li, J.; Shan, E.; Zhao, J.; Teng, J.; Wang, Q. The Factors Influencing the Vertical Transport of Microplastics in Marine Environment: A Review. Sci. Total Environ. 2023, 870, 161893. [Google Scholar] [CrossRef]
- Microplastics in Drinking-Water; World Health Organization: Geneva, Switzerland, 2019; ISBN 9789241516198.
- Shen, M.; Song, B.; Zhou, C.; Almatrafi, E.; Hu, T.; Zeng, G.; Zhang, Y. Recent Advances in Impacts of Microplastics on Nitrogen Cycling in the Environment: A Review. Sci. Total Environ. 2022, 815, 152740. [Google Scholar] [CrossRef]
- Miranda Zoppas, F.; Sacco, N.; Soffietti, J.; Devard, A.; Akhter, F.; Marchesini, F.A. Catalytic Approaches for the Removal of Microplastics from Water: Recent Advances and Future Opportunities. Chem. Eng. J. Adv. 2023, 16, 100529. [Google Scholar] [CrossRef]
- Akarsu, C.; Kumbur, H.; Kideys, A.E. Removal of Microplastics from Wastewater through Electrocoagulation-Electroflotation and Membrane Filtration Processes. Water Sci. Technol. 2021, 84, 1648–1662. [Google Scholar] [CrossRef]
- Yuan, C.; Almuhtaram, H.; McKie, M.J.; Andrews, R.C. Assessment of Microplastic Sampling and Extraction Methods for Drinking Waters. Chemosphere 2022, 286, 131881. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, Y.; Almatrafi, E.; Hu, T.; Zhou, C.; Song, B.; Zeng, Z.; Zeng, G. Efficient Removal of Microplastics from Wastewater by an Electrocoagulation Process. Chem. Eng. J. 2022, 428, 131161. [Google Scholar] [CrossRef]
- Elkhatib, D.; Oyanedel-Craver, V.; Carissimi, E. Electrocoagulation Applied for the Removal of Microplastics from Wastewater Treatment Facilities. Sep. Purif. Technol. 2021, 276, 118877. [Google Scholar] [CrossRef]
- Xue, J.; Peldszus, S.; Van Dyke, M.I.; Huck, P.M. Removal of Polystyrene Microplastic Spheres by Alum-Based Coagulation-Flocculation-Sedimentation (CFS) Treatment of Surface Waters. Chem. Eng. J. 2021, 422, 130023. [Google Scholar] [CrossRef]
- Lee, P.S.; Jung, S.M. Quantitative Analysis of Microplastics Coagulation-Removal Process for Clean Sea Salt Production. Int. J. Environ. Sci. Technol. 2022, 19, 5205–5216. [Google Scholar] [CrossRef]
- Ahmed, R.; Hamid, A.K.; Krebsbach, S.A.; He, J.; Wang, D. Critical Review of Microplastics Removal from the Environment. Chemosphere 2022, 293, 133557. [Google Scholar] [CrossRef]
- Saboor, F.H.; Hadian-Ghazvini, S.; Torkashvand, M. Microplastics in Aquatic Environments: Recent Advances in Separation Techniques. Period. Polytech. Chem. Eng. 2022, 66, 167–181. [Google Scholar] [CrossRef]
- Grause, G.; Kuniyasu, Y.; Chien, M.F.; Inoue, C. Separation of Microplastic from Soil by Centrifugation and Its Application to Agricultural Soil. Chemosphere 2022, 288, 132654. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.; Örmeci, B. Removal Effectiveness of Nanoplastics (<400 Nm) with Separation Processes Used for Water and Wastewater Treatment. Water 2020, 12, 635. [Google Scholar] [CrossRef]
- Hildebrandt, L.; Voigt, N.; Zimmermann, T.; Reese, A.; Proefrock, D. Evaluation of Continuous Flow Centrifugation as an Alternative Technique to Sample Microplastic from Water Bodies. Mar. Environ. Res. 2019, 151, 104768. [Google Scholar] [CrossRef]
- Hildebrandt, L.; Mitrano, D.M.; Zimmermann, T.; Pröfrock, D. A Nanoplastic Sampling and Enrichment Approach by Continuous Flow Centrifugation. Front. Environ. Sci. 2020, 8, 89. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, C.; Li, H.; Offiong, N.A.O.; Bi, Y.; Zhou, R.; Ren, H. A Systematic Review of Electrocoagulation Technology Applied for Microplastics Removal in Aquatic Environment. Chem. Eng. J. 2023, 456, 141078. [Google Scholar] [CrossRef]
- Elkhatib, D.; Oyanedel-Craver, V. A Critical Review of Extraction and Identification Methods of Microplastics in Wastewater and Drinking Water. Environ. Sci. Technol. 2020, 54, 7037–7049. [Google Scholar] [CrossRef] [PubMed]
- Perren, W.; Wojtasik, A.; Cai, Q. Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega 2018, 3, 3357–3364. [Google Scholar] [CrossRef]
- Govindan, K.; Angelin, A.; Kalpana, M.; Rangarajan, M.; Shankar, P.; Jang, A. Electrocoagulants Characteristics and Application of Electrocoagulation for Micropollutant Removal and Transformation Mechanism. ACS Appl. Mater. Interfaces 2020, 12, 1775–1788. [Google Scholar] [CrossRef]
- Poerio, T.; Piacentini, E.; Mazzei, R. Membrane Processes for Microplastic Removal. Molecules 2019, 24, 4148. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, R.P.; Rout, P.K.; Das, A.P. Membrane Bioreactor (MBR) as an Advanced Wastewater Treatment Technology for Removal of Synthetic Microplastics. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 45–60. [Google Scholar]
- Wang, Z.; Liu, K.; Gao, Y.; Li, G.; Li, Z.; Wang, Q.; Guo, L.; Liu, T.; Al-Namazi, M.A.; Li, S. Removal and Fouling Influence of Microplastics in Fertilizer Driven Forward Osmosis for Wastewater Reclamation. Membranes 2021, 11, 845. [Google Scholar] [CrossRef]
- Adewuyi, A.; Campbell, A.J.; Adeyemi, O.G. The Potential Role of Membrane Technology in the Removal of Microplastics from Wastewater. J. Appl. Membr. Sci. Technol. 2021, 25, 31–53. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Pramanik, S.K.; Monira, S. Understanding the Fragmentation of Microplastics into Nano-Plastics and Removal of Nano/Microplastics from Wastewater Using Membrane, Air Flotation and Nano-Ferrofluid Processes. Chemosphere 2021, 282, 131053. [Google Scholar] [CrossRef]
- Cherniak, S.L.; Almuhtaram, H.; McKie, M.J.; Hermabessiere, L.; Yuan, C.; Rochman, C.M.; Andrews, R.C. Conventional and Biological Treatment for the Removal of Microplastics from Drinking Water. Chemosphere 2022, 288, 132587. [Google Scholar] [CrossRef]
- Amjad, M.; Intisar, A.; Afzal, A.; Hussain, N. Chapter Four—Biological Methods for the Removal of Microplastics from Water. In Recent Advancements in Wastewater Management: Implications and Biological Solutions; Ferreira, L.F.R., Kumar, A., Bilal, M., Eds.; Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2023; Volume 9, pp. 65–78. [Google Scholar]
- Tang, S.; Lin, L.; Wang, X.; Sun, X.; Yu, A. Adsorption of Fulvic Acid onto Polyamide 6 Microplastics: Influencing Factors, Kinetics Modeling, Site Energy Distribution and Interaction Mechanisms. Chemosphere 2021, 272, 129638. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, C.; Huang, Q.X.; Chi, Y.; Yan, J.H. Adsorption and Thermal Degradation of Microplastics from Aqueous Solutions by Mg/Zn Modified Magnetic Biochars. J. Hazard. Mater. 2021, 419, 126486. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Huang, X.; Wang, L.; Zhao, X.; Yan, F.; Yang, Y.; Li, G.; Gao, P.; Ji, P. Removal of Polystyrene Nanoplastics from Aqueous Solutions Using a Novel Magnetic Material: Adsorbability, Mechanism, and Reusability. Chem. Eng. J. 2022, 430, 133122. [Google Scholar] [CrossRef]
- Batool, A.; Valiyaveettil, S. Surface Functionalized Cellulose Fibers—A Renewable Adsorbent for Removal of Plastic Nanoparticles from Water. J. Hazard. Mater. 2021, 413, 125301. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef] [PubMed]
- Sarbu, I.; Sebarchievici, C. Solar Thermal-Driven Cooling Systems. In Solar Heating and Cooling Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 241–313. [Google Scholar]
- Sun, C.; Wang, Z.; Zheng, H.; Chen, L.; Li, F. Biodegradable and Re-Usable Sponge Materials Made from Chitin for Efficient Removal of Microplastics. J. Hazard. Mater. 2021, 420, 126599. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, C.; Li, F.; Chen, L. Fatigue Resistance, Re-Usable and Biodegradable Sponge Materials from Plant Protein with Rapid Water Adsorption Capacity for Microplastics Removal. Chem. Eng. J. 2021, 415, 129006. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Liu, X.; Ni, B.J. Emerging Electrochemical Techniques for Identifying and Removing Micro/Nanoplastics in Urban Waters. Water Res. 2022, 221, 118846. [Google Scholar] [CrossRef]
- Feng, H.M.; Zheng, J.C.; Lei, N.Y.; Yu, L.; Kong, K.H.K.; Yu, H.Q.; Lau, T.C.; Lam, M.H.W. Photoassisted Fenton Degradation of Polystyrene. Environ. Sci. Technol. 2011, 45, 744–750. [Google Scholar] [CrossRef]
- Zan, L.; Wang, S.; Fa, W.; Hu, Y.; Tian, L.; Deng, K. Solid-Phase Photocatalytic Degradation of Polystyrene with Modified Nano-TiO2 Catalyst. Polymer 2006, 47, 8155–8162. [Google Scholar] [CrossRef]
- Kemp, T.J.; McIntyre, R.A. Influence of Transition Metal-Doped Titanium(IV) Dioxide on the Photodegradation of Polystyrene. Polym. Degrad. Stab. 2006, 91, 3010–3019. [Google Scholar] [CrossRef]
- Duan, X.; Sun, H.; Wang, S. Metal-Free Carbocatalysis in Advanced Oxidation Reactions. Acc. Chem. Res. 2018, 51, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, L.; Zhang, J.; Lei, J.; Liu, Y. Well-Dispersed Fe2O3 Nanoparticles on g-C3N4 for Efficient and Stable Photo-Fenton Photocatalysis under Visible-Light Irradiation. Eur. J. Inorg. Chem. 2016, 2016, 5387–5392. [Google Scholar] [CrossRef]
- Sacco, N.A.; Marchesini, F.A.; Gamba, I.; García, G. Photoelectrochemical Degradation of Contaminants of Emerging Concern with Special Attention on the Removal of Acetaminophen in Water-Based Solutions. Catalysts 2023, 13, 524. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Z.; Ouyang, Z.; Shang, M.; Liu, P.; Li, H.; Guo, X. Photocatalytic Degradation of (Micro)Plastics Using TiO2-Based and Other Catalysts: Properties, Influencing Factor, and Mechanism. Environ. Res. 2022, 209, 112729. [Google Scholar] [CrossRef]
- He, X.; Wang, A.; Wu, P.; Tang, S.; Zhang, Y.; Li, L.; Ding, P. Photocatalytic Degradation of Microcystin-LR by Modified TiO2 Photocatalysis: A Review. Sci. Total Environ. 2020, 743, 140694. [Google Scholar] [CrossRef]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental Implications of Hydroxyl Radicals (•OH). Chem. Rev. 2015, 115, 13051–13092. [Google Scholar] [CrossRef]
- Proctor, A.D.; Bartlett, B.M. Hydroxyl Radical Suppression during Photoelectrocatalytic Water Oxidation on WO3|FeOOH. J. Phys. Chem. C 2020, 124, 17957–17963. [Google Scholar] [CrossRef]
- Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A. Principles and Mechanisms of Photocatalytic Dye Degradation on TiO2 Based Photocatalysts: A Comparative Overview. RSC Adv. 2014, 4, 37003–37026. [Google Scholar] [CrossRef]
- Kaewkam, P.; Kanchanapaetnukul, A.; Khamyan, J.; Phadmanee, N.; Lin, K.-Y.A.; Kobwittaya, K.; Sirivithayapakorn, S. UV-Assisted TiO2 Photocatalytic Degradation of Virgin LDPE Films: Effect of UV-A, UV-C, and TiO2. J. Environ. Chem. Eng. 2022, 10, 108131. [Google Scholar] [CrossRef]
- Liu, P.; Qian, L.; Wang, H.; Zhan, X.; Lu, K.; Gu, C.; Gao, S. New Insights into the Aging Behavior of Microplastics Accelerated by Advanced Oxidation Processes. Environ. Sci. Technol. 2019, 53, 3579–3588. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Jia, H.; Zhao, S.; Xia, T.; Guo, X.; Wang, T.; Zhu, L. Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation. Environ. Sci. Technol. 2019, 53, 8177–8186. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Wang, J.; Peng, J.; Wu, Z.; Tan, X. Observation of the Degradation of Three Types of Plastic Pellets Exposed to UV Irradiation in Three Different Environments. Sci. Total Environ. 2018, 628–629, 740–747. [Google Scholar] [CrossRef]
- Tan, S.Y.; Chong, W.C.; Sethupathi, S.; Pang, Y.L.; Sim, L.C.; Mahmoudi, E. Optimisation of Aqueous Phase Low Density Polyethylene Degradation by Graphene Oxide-Zinc Oxide Photocatalysts. Chem. Eng. Res. Des. 2023, 190, 550–565. [Google Scholar] [CrossRef]
- Zhu, K.; Jia, H.; Sun, Y.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. Long-Term Phototransformation of Microplastics under Simulated Sunlight Irradiation in Aquatic Environments: Roles of Reactive Oxygen Species. Water Res. 2020, 173, 115564. [Google Scholar] [CrossRef]
- Nabi, I.; Bacha, A.U.R.; Li, K.; Cheng, H.; Wang, T.; Liu, Y.; Ajmal, S.; Yang, Y.; Feng, Y.; Zhang, L. Complete Photocatalytic Mineralization of Microplastic on TiO2 Nanoparticle Film. iScience 2020, 23, 101326. [Google Scholar] [CrossRef]
- Fadli, M.H.; Ibadurrohman, M.; Slamet, S. Microplastic Pollutant Degradation in Water Using Modified TiO2 Photocatalyst under UV-Irradiation. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Tangerang, Indonesia, 18–20 November 2020; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 1011. [Google Scholar]
- Maulana, D.A.; Ibadurrohman, M.; Slamet. Synthesis of Nano-Composite Ag/TiO2 for Polyethylene Microplastic Degradation Applications. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Tangerang, Indonesia, 18–20 November 2020; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 1011. [Google Scholar]
- Zhou, D.; Luo, H.; Zhang, F.; Wu, J.; Yang, J.; Wang, H. Efficient Photocatalytic Degradation of the Persistent PET Fiber-Based Microplastics over Pt Nanoparticles Decorated N-Doped TiO2 Nanoflowers. Adv. Fiber Mater. 2022, 4, 1094–1107. [Google Scholar] [CrossRef]
- Tofa, T.S.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible Light Photocatalytic Degradation of Microplastic Residues with Zinc Oxide Nanorods. Environ. Chem. Lett. 2019, 17, 1341–1346. [Google Scholar] [CrossRef]
- Sun, A.; Wang, W.-X. Photodegradation of Microplastics by ZnO Nanoparticles with Resulting Cellular and Subcellular Responses. Environ. Sci. Technol. 2023, 57, 8118–8129. [Google Scholar] [CrossRef]
- Razali, N.A.; Abdullah, W.R.W.; Zikir, N.M. Effect of thermo-photocatalytic process using zinc oxide on degradation of macro/micro-plastic in aqueous environment. J. Sustain. Sci. Manag. 2020, 15, 1–14. [Google Scholar] [CrossRef]
- Tofa, T.S.; Ye, F.; Kunjali, K.L.; Dutta, J. Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts. Catalysts 2019, 9, 819. [Google Scholar] [CrossRef]
- Jiang, R.; Lu, G.; Yan, Z.; Liu, J.; Wu, D.; Wang, Y. Microplastic Degradation by Hydroxy-Rich Bismuth Oxychloride. J. Hazard. Mater. 2021, 405, 124247. [Google Scholar] [CrossRef]
- Khairudin, K.; Abu Bakar, N.F.; Osman, M.S. Magnetically Recyclable Flake-like BiOI-Fe3O4 microswimmers for Fast and Efficient Degradation of Microplastics. J. Environ. Chem. Eng. 2022, 10, 108275. [Google Scholar] [CrossRef]
- Olajire, A.A.; Mohammed, A.A. Bio-Directed Synthesis of Gold Nanoparticles Using Ananas Comosus Aqueous Leaf Extract and Their Photocatalytic Activity for LDPE Degradation. Adv. Powder Technol. 2021, 32, 600–610. [Google Scholar] [CrossRef]
- Sturm, M.T.; Horn, H.; Schuhen, K. Removal of Microplastics from Waters through Agglomeration-Fixation Using Organosilanes—Effects of Polymer Types, Water Composition and Temperature. Water 2021, 13, 675. [Google Scholar] [CrossRef]
- Sturm, M.T.; Herbort, A.F.; Horn, H.; Schuhen, K. Comparative Study of the Influence of Linear and Branched Alkyltrichlorosilanes on the Removal Efficiency of Polyethylene and Polypropylene-Based Microplastic Particles from Water. Environ. Sci. Pollut. Res. 2020, 27, 10888–10898. [Google Scholar] [CrossRef]
- Xue, J.; Samaei, S.H.A.; Chen, J.; Doucet, A.; Ng, K.T.W. What Have We Known so Far about Microplastics in Drinking Water Treatment? A Timely Review. Front. Environ. Sci. Eng. 2022, 16, 58. [Google Scholar] [CrossRef]
- Karimi Estahbanati, M.R.; Kiendrebeogo, M.; Khosravanipour Mostafazadeh, A.; Drogui, P.; Tyagi, R.D. Treatment Processes for Microplastics and Nanoplastics in Waters: State-of-the-Art Review. Mar. Pollut. Bull. 2021, 168, 112374. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Hadibarata, T. Microplastics Removal through Water Treatment Plants: Its Feasibility, Efficiency, Future Prospects and Enhancement by Proper Waste Management. Environ. Chall. 2021, 5, 100264. [Google Scholar] [CrossRef]
Method Type | Method | Advantages | Disadvantages |
---|---|---|---|
Physical | Filtration |
|
|
Sedimentation |
|
| |
Centrifugation |
|
| |
Electrocoagulation |
|
| |
Advanced | Membrane technology |
|
|
Biological treatment |
|
| |
Adsorption |
|
| |
Advanced | AOPs |
|
|
Photocatalysts | MPs | Conditions | Degradation Efficiency (%) | Ref. | ||
---|---|---|---|---|---|---|
ZnO | ZnO | LDPE |
|
|
| [67] |
|
| |||||
|
| |||||
|
| |||||
ZnO and MPs extracted from sunscreen |
|
| [68] | |||
PP |
|
| [69] | |||
GO-ZnO | LDPE |
|
| [61] | ||
Pt-ZnO |
|
|
| [70] | ||
|
| |||||
|
| |||||
Other | BiOCl | PE |
|
|
| [71] |
|
| |||||
Different types, colors, and sizes of MPs |
|
| ||||
|
| |||||
BiOI-Fe3O4 | PSL |
|
|
| [72] | |
|
| |||||
|
| |||||
|
| |||||
Au NPs | LDPE |
|
| [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacco, N.A.; Zoppas, F.M.; Devard, A.; González Muñoz, M.d.P.; García, G.; Marchesini, F.A. Recent Advances in Microplastics Removal from Water with Special Attention Given to Photocatalytic Degradation: Review of Scientific Research. Microplastics 2023, 2, 278-303. https://doi.org/10.3390/microplastics2030023
Sacco NA, Zoppas FM, Devard A, González Muñoz MdP, García G, Marchesini FA. Recent Advances in Microplastics Removal from Water with Special Attention Given to Photocatalytic Degradation: Review of Scientific Research. Microplastics. 2023; 2(3):278-303. https://doi.org/10.3390/microplastics2030023
Chicago/Turabian StyleSacco, Nicolás Alejandro, Fernanda Miranda Zoppas, Alejandra Devard, María del Pilar González Muñoz, Gonzalo García, and Fernanda Albana Marchesini. 2023. "Recent Advances in Microplastics Removal from Water with Special Attention Given to Photocatalytic Degradation: Review of Scientific Research" Microplastics 2, no. 3: 278-303. https://doi.org/10.3390/microplastics2030023
APA StyleSacco, N. A., Zoppas, F. M., Devard, A., González Muñoz, M. d. P., García, G., & Marchesini, F. A. (2023). Recent Advances in Microplastics Removal from Water with Special Attention Given to Photocatalytic Degradation: Review of Scientific Research. Microplastics, 2(3), 278-303. https://doi.org/10.3390/microplastics2030023