Accuracy of a Simple Microplastics Investigation Method on Sandy Beaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Process
2.2. Land Survey
2.3. Heavy Liquid Sorting
2.4. Distribution in Depth
2.5. Sedimentation of Wood Particles by Boiling
2.6. Lower Limit of Quantification
3. Results
3.1. Errors in Simple Survey
3.2. Heavy Liquid Sorting
3.3. Distribution in Depth Direction
3.4. Sedimentation of Wood Particles by Boiling
3.5. Lower Limit of Quantification
4. Discussion
4.1. Survey Accuracy When Using Simple Survey Tools
4.2. MPs That Sink in Seawater
4.3. MPs Distribution in Depth
4.4. Error in Considering Floating Matter as MPs after Boiling
4.5. Lower Limit of Quantification of MPs Using the Measurement Method Presented in This Study
4.6. Problems of This Study, Future Research
4.7. Significance of This Study
5. Conclusions
- (1)
- Sufficient accuracy is achieved by the land survey that uses a tape measure and a piece of cardboard as simple tools, and immovable natural and artificial objects in the study site as landmarks. When multiple surveys of approximately 20 m distance are performed, the maximum coefficient of variation is approximately 1%, i.e., 70% of the deviations are within approximately 20 cm.
- (2)
- If workload reduction is desired, recovery of MPs by seawater only is acceptable. Eighty-nine percent of MPs can be recovered with seawater only.
- (3)
- If workload reduction is desired, sand sampling only in the surface layer is acceptable. An investigation of MPs content by sampling 0.5 cm of the surface layer of sand can explain more than half of the MPs content when the sand is sampled to a depth of approximately 50 cm below the surface layer.
- (4)
- If workload reduction is desired, a method in which the recovered MPs are not visually sorted, but the floating matter after boiling is considered as MPs is acceptable. If there is no concern about pumice contamination, the overestimation is approximately 1.5 times.
- (5)
- Simple laboratory equipment such as buckets, sieves, seawater, hot plates, dryers, and electronic balances can achieve lower limits of quantification of MPs of 13 mg-MPs/m2-sand and 2 mg-MPs/kg-sand.
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willis, K.A.; Eriksen, R.; Wilcox, C.; Hardesty, B.D. Microplastic Distribution at Different Sediment Depths in an Urban Estuary. Front. Mar. Sci. 2017, 4, 419. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Galloway, T.; Thompson, R. Microplastic–an emerging contaminant of potential concern? Integr. Environ. Assess. Manag. 2007, 3, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Mato, Y.; Isobe, T.; Takada, H.; Kanehiro, H.; Ohtake, C.; Kaminuma, T. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ. Sci. Technol. 2001, 35, 318–324. [Google Scholar] [CrossRef]
- Frias, J.P.; Sobral, P.; Ferreira, A.M. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar. Pollut. Bull. 2010, 60, 1988–1992. [Google Scholar] [CrossRef]
- Bellas, J.; Martinez-Armental, J.; Martinez-Camara, A.; Besada, V.; Martinez-Gomez, C. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar. Pollut. Bull. 2016, 109, 55–60. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environ. Sci. Technol. 2012, 47, 1646–1654. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef] [PubMed]
- Vandermeersch, G.; Van Cauwenberghe, L.; Janssen, C.R.; Marques, A.; Granby, K.; Fait, G.; Kotterman, M.J.; Diogene, J.; Bekaert, K.; Robbens, J.; et al. A critical view on microplastic quantification in aquatic organisms. Environ. Res. 2015, 143, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A.L.; McHugh, M.; Thompson, R.C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013, 67, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Takada, H.; Yamashita, R.; Mizukawa, K.; Fukuwaka, M.; Watanuki, Y. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar. Pollut. Bull. 2013, 69, 219–222. [Google Scholar] [CrossRef]
- Ng, K.L.; Obbard, J.P. Prevalence of microplastics in Singapore’s coastal marine environment. Mar. Pollut. Bull. 2006, 52, 761–767. [Google Scholar] [CrossRef]
- Corcoran, P.L.; Biesinger, M.C.; Grifi, M. Plastics and beaches: A degrading relationship. Mar. Pollut. Bull. 2009, 58, 80–84. [Google Scholar] [CrossRef]
- Turner, A.; Holmes, L. Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (central Mediterranean). Mar. Pollut. Bull. 2011, 62, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.; Sobral, P. Plastic marine debris on the Portuguese coastline: A matter of size? Mar. Pollut. Bull. 2011, 62, 2649–2653. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): A study supported by a citizen science project. Mar. Environ. Res. 2013, 87–88, 12–18. [Google Scholar] [CrossRef]
- Mathalon, A.; Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 2014, 81, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Masura, J.; Baker, J.; Foster, G.; Arthur, C. Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying the Synthetic Particles in Water and Sediments; NOAA Marine Debris Division: Silver Spring, MA, USA, 2015. [Google Scholar]
- Wessel, C.C.; Lockridge, G.R.; Battiste, D.; Cebrian, J. Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries. Mar. Pollut. Bull. 2016, 109, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Crichton, E.M.; Noël, M.; Gies, E.A.; Ross, P.S. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments. Anal. Methods 2017, 9, 1419–1428. [Google Scholar] [CrossRef]
- Maes, T.; Jessop, R.; Wellner, N.; Haupt, K.; Mayes, A.G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile red. Sci. Rep. 2017, 7, 44501. [Google Scholar] [CrossRef]
- Quinn, B.; Murphy, F.; Ewins, C. Validation of density separation for the rapid recovery of microplastics from sediment. Anal. Methods 2017, 9, 1491–1498. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Cheshire, A.C.; Adler, E.; Barbière, J.; Cohen, Y.; Evans, S.; Jarayabhand, S.; Jeftic, L.; Jung, R.T.; Kinsey, S.; Kusui, E.T.; et al. UNEP/IOC Guidelines on Survey and Monitoring of Marine Litter; UNEP Regional Seas Reports and Studies. 186 (IOC Technical Series No. 83); United Nations Environment Programme: Nairobi, Kenya, 2009; p. 120. [Google Scholar]
- Wenneker, B.; Oosterbaan, L.; Intersessional Correspondence Group on Marine Litter (ICGML). Guideline for Monitoring Marine Litter on the Beaches in the OSPAR Maritime Area; OSPAR Commission: London, UK, 2010; p. 15. [Google Scholar] [CrossRef]
- Burgess, H.K.; Herring, C.E.; Lippiatt, S.; Lowe, S.; Uhrin, A.V. NOAA Marine Debris Monitoring and Assessment Project Shoreline Survey Guide; NOAA Technical Memorandum. NOSOR&R 56: Silver Spring, MA, USA, 2021; p. 20. Available online: https://repository.library.noaa.gov/view/noaa/33282 (accessed on 18 June 2023).
- Galgani, F.; Hanke, G.; Werner, S.; Oosterbaan, L.; Nilsson, P.; Fleet, D.; Kinsey, S.; RC, T.; Van Franeker, J.; Vlachogianni, T.; et al. Guidance on Monitoring of Marine Litter in European Seas; EUR 26113; European Commission, Joint Research Centre (JRC). MSFD Technical Subgroup on Marine Litter (TSG-ML): Luxembourg, 2013; p. 123. [Google Scholar] [CrossRef]
- Kershaw, P.J.; Turra, A.; Galgani, F. GESAMP Guidelines or the monitoring and assessment of plastic litter and microplastics in the ocean (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP 2019, 99, 130. [Google Scholar]
- Frias, J.; Pagter, E.; Nash, R.; O’Connor, I.; Carretero, O.; Filgueiras, A.; Viñas, L.; Gago, J.; Antunes, J.; Bessa, F.; et al. Standardised protocol for monitoring microplastics in sediments. JPI-Ocean BASEMAN 2018. [Google Scholar] [CrossRef]
- GPS.GOV. Data from the First Week without Selective Availability. 2000. Available online: https://www.gps.gov/systems/gps/modernization/sa/data/ (accessed on 18 June 2023).
- Ferrero, F. Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. J. Hazard. Mater. 2007, 142, 144–152. [Google Scholar] [CrossRef]
- Dou, P.C.; Mai, L.; Bao, L.J.; Zeng, E.Y. Microplastics on beaches and mangrove sediments along the coast of South China. Mar. Pollut. Bull. 2021, 172, 112806. [Google Scholar] [CrossRef]
- Mermet, J.M. Spectrochim. Spectrochim. Acta Part B 2008, 63, 166. [Google Scholar] [CrossRef]
- Majewsky, M.; Bitter, H.; Eiche, E.; Horn, H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci. Total Environ. 2016, 568, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.M.; Yang, J.; Criddle, C.S. Microplastics pollution and reduction strategies. Front. Environ. Sci. Eng. 2016, 11, 6. [Google Scholar] [CrossRef]
- Sewwandi, M.; Amarathunga, A.A.D.; Wijesekara, H.; Mahatantila, K.; Vithanage, M. Contamination and distribution of buried microplastics in Sarakkuwa beach ensuing the MV X-Press Pearl maritime disaster in Sri Lankan sea. Mar. Pollut. Bull. 2022, 184, 114074. [Google Scholar] [CrossRef] [PubMed]
- Prarat, P.; Hongsawat, P. Microplastic pollution in surface seawater and beach sand from the shore of Rayong province, Thailand: Distribution, characterization, and ecological risk assessment. Mar. Pollut. Bull. 2022, 174, 113200. [Google Scholar] [CrossRef]
- Zahari, N.Z.; Tuah, P.M.; Junaidi, M.R.; Mohd Ali, S.A. Identification, Abundance, and Chemical Characterization of Macro-, Meso-, and Microplastics in the Intertidal Zone Sediments of Two Selected Beaches in Sabah, Malaysia. Water 2022, 14, 1600. [Google Scholar] [CrossRef]
- Rabari, V.; Patel, K.; Patel, H.; Trivedi, J. Quantitative assessment of microplastic in sandy beaches of Gujarat state, India. Mar. Pollut. Bull. 2022, 181, 113925. [Google Scholar] [CrossRef]
- Nabhani, K.A.; Salzman, S.; Shimeta, J.; Dansie, A.; Allinson, G. A temporal assessment of microplastics distribution on the beaches of three remote islands of the Yasawa archipelago, Fiji. Mar. Pollut. Bull. 2022, 185, 114202. [Google Scholar] [CrossRef]
- Nhon, N.T.T.; Nguyen, N.T.; Hai, H.T.N.; Hien, T.T. Distribution of microplastics in beach sand on the Can Gio coast, Ho Chi Minh city, Vietnam. Water 2022, 14, 2779. [Google Scholar] [CrossRef]
- Duncan, E.M.; Arrowsmith, J.; Bain, C.; Broderick, A.C.; Lee, J.; Metcalfe, K.; Pikesley, S.K.; Snape, R.T.E.; van Sebille, E.; Godley, B.J. The true depth of the Mediterranean plastic problem: Extreme microplastic pollution on marine turtle nesting beaches in Cyprus. Mar. Pollut. Bull. 2018, 136, 334–340. [Google Scholar] [CrossRef]
- Turra, A.; Manzano, A.B.; Dias, R.J.; Mahiques, M.M.; Barbosa, L.; Balthazar-Silva, D.; Moreira, F.T. Three-dimensional distribution of plastic pellets in sandy beaches: Shifting paradigms. Sci. Rep. 2014, 4, 4435. [Google Scholar] [CrossRef]
i | P1 | P2 | P3 | yi | xi | (yi − yave)2 | (xi − xave)2 | ei | ei2 |
---|---|---|---|---|---|---|---|---|---|
m | m | m2 | m2 | m | m2 | ||||
1 | M1 | M2 | M3 | 0.03 | 0.17 | 0.0030 | 0.0006 | 0.0604 | 0.0037 |
2 | M3 | M1 | M2 | 0.02 | 0.14 | 0.0042 | 0.0000 | 0.0652 | 0.0043 |
3 | M2 | M3 | M1 | 0.08 | 0.19 | 0.0000 | 0.0020 | 0.0453 | 0.0021 |
4 | M1 | M3 | M2 | 0.12 | 0.09 | 0.0012 | 0.0030 | 0.0652 | 0.0043 |
5 | M2 | M1 | M3 | 0.15 | 0.24 | 0.0042 | 0.0090 | 0.1151 | 0.0133 |
6 | M3 | M2 | M1 | 0.11 | 0.04 | 0.0006 | 0.0110 | 0.1079 | 0.0117 |
Average | 0.09 | 0.15 | s2 | m2 | 0.0078 | ||||
σ | m | 0.0884 | |||||||
CV | % | 0.4290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asakura, H. Accuracy of a Simple Microplastics Investigation Method on Sandy Beaches. Microplastics 2023, 2, 304-321. https://doi.org/10.3390/microplastics2030024
Asakura H. Accuracy of a Simple Microplastics Investigation Method on Sandy Beaches. Microplastics. 2023; 2(3):304-321. https://doi.org/10.3390/microplastics2030024
Chicago/Turabian StyleAsakura, Hiroshi. 2023. "Accuracy of a Simple Microplastics Investigation Method on Sandy Beaches" Microplastics 2, no. 3: 304-321. https://doi.org/10.3390/microplastics2030024
APA StyleAsakura, H. (2023). Accuracy of a Simple Microplastics Investigation Method on Sandy Beaches. Microplastics, 2(3), 304-321. https://doi.org/10.3390/microplastics2030024