Comparing Methods for Microplastic Quantification Using the Danube as a Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Danube River
2.2. Depth Samples
2.3. Cartridge Filtration
2.4. Net Filtration
2.5. Time of Sampling
2.6. Sample Preparation
2.7. Analytic Methods
2.8. Method Comparison
3. Results
3.1. Polymer Composition in the Water Column
3.2. Polymer Density in the Water Column
3.3. Polymer Particles in the Water Column
3.4. Polymer Composition in Cartridge and Net Filtrations
3.5. Method Comparison
4. Discussion
4.1. Depth Samples
4.2. Method Comparison: Particle Composition
4.3. Method Comparison: Particle Amount
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johansen, M.R.; Christensen, T.B.; Ramos, T.M.; Syberg, K. A review of the plastic value chain from a circular economy perspective. J. Environ. Manag. 2022, 302, 113975. [Google Scholar] [CrossRef] [PubMed]
- Plastics Division: Life Cycle of a Plastic Product. Available online: https://web.archive.org/web/20100317004747/http://www.americanchemistry.com/s_plastics/doc.asp?CID=1571&DID=5972 (accessed on 7 December 2022).
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Liedermann, M.; Gmeiner, P.; Pessenlehner, S.; Haimann, M.; Hohenblum, P.; Habersack, H. A Methodology for Measuring Microplastic Transport in Large or Medium Rivers. Water 2018, 10, 414. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Liu, X.; Qu, F.; Wang, X.; Wang, X.; Li, Y.; Sun, Y. Microplastics in the environment: A review of analytical methods, distribution, and biological effects. TrAC Trends Anal. Chem. 2019, 111, 62–72. [Google Scholar] [CrossRef]
- Galgani, F.; Hanke, G.; Werner, S.; De Vrees, L. Marine litter within the European Marine Strategy Framework Directive. ICES J. Mar. Sci. 2013, 70, 1055–1064. [Google Scholar] [CrossRef]
- Streit-Bianchi, M.; Cimadevila, M.; Trettnak, W. Mare Plasticum—The Plastic Sea Combatting Plastic Pollution through Science and Art; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Lechner, A.; Ramler, D. The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation. Environ. Pollut. 2015, 200, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Lambert, S. Freshwater Microplastics the Handbook of Environmental Chemistry 58 Series Editors: Damià Barceló · Andrey G. Kostianoy. Available online: http://www.springer.com/series/698 (accessed on 9 December 2022).
- Stock, F.; Kochleus, C.; Bänsch-Baltruschat, B.; Brennholt, N.; Reifferscheid, G. Sampling techniques and preparation methods for microplastic analyses in the aquatic environment—A review. TrAC Trends Anal. Chem. 2019, 113, 84–92. [Google Scholar] [CrossRef]
- Lechner, A.; Keckeis, H.; Lumesberger-Loisl, F.; Zens, B.; Krusch, R.; Tritthart, M.; Glas, M.; Schludermann, E. The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Pollut. 2014, 188, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Kittner, M.; Kerndorff, A.; Ricking, M.; Bednarz, M.; Obermaier, N.; Lukas, M.; Asenova, M.; Bordós, G.; Eisentraut, P.; Hohenblum, P.; et al. Microplastics in the Danube River Basin: A First Comprehensive Screening with a Harmonized Analytical Approach. ACS ES&T Water 2022, 2, 1174–1181. [Google Scholar] [CrossRef]
- Pojar, I.; Stănică, A.; Stock, F.; Kochleus, C.; Schultz, M.; Bradley, C. Sedimentary microplastic concentrations from the Romanian Danube River to the Black Sea. Sci. Rep. 2021, 11, 2000. [Google Scholar] [CrossRef] [PubMed]
- Pojar, I.; Tirondutu, L.; Pop, C.I.; Dutu, F. Hydrodynamic Observations on Microplastic Abundances and Morphologies in the Danube Delta, Romania. AgroLife Sci. J. 2021, 10, 142–149. [Google Scholar] [CrossRef]
- Miklós, D.; Neppel, F. Palaeogeography of the Danube and Its Catchment. In Hydrological Processes of the Danube River Basin; Springer: Dordrecht, The Netherlands, 2010; pp. 79–124. [Google Scholar] [CrossRef]
- Lenaker, P.L.; Baldwin, A.K.; Corsi, S.R.; Mason, S.A.; Reneau, P.C.; Scott, J.W. Vertical Distribution of Microplastics in the Water Column and Surficial Sediment from the Milwaukee River Basin to Lake Michigan. Environ. Sci. Technol. 2019, 53, 12227–12237. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Courtene-Jones, W.; Wang, X.; Song, Z.; Wei, N.; Li, D. Elucidating the vertical transport of microplastics in the water column: A review of sampling methodologies and distributions. Water Res. 2020, 186, 116403. [Google Scholar] [CrossRef] [PubMed]
- Park, T.-J.; Lee, S.-H.; Lee, M.-S.; Lee, J.-K.; Lee, S.-H.; Zoh, K.-D. Occurrence of microplastics in the Han River and riverine fish in South Korea. Sci. Total Environ. 2020, 708, 134535. [Google Scholar] [CrossRef] [PubMed]
- Tockner, K.; Uehlinger, U.; Robinson, C.T. Rivers of Europe; Academic Press: Cambridge, MA, USA, 2009; Available online: https://books.google.de/books?hl=de&lr=&id=GDmX5XKkQCcC&oi=fnd&pg=PT75&dq=danube+drainage+basin&ots=CTZeJ4zYUU&sig=DZ1-KTx9A8OkgZ14HLVt0ikZ1Jw&redir_esc=y#v=onepage&q&f=false (accessed on 28 September 2023).
- Schiemer, F.; Guti, G.; Keckeis, H.; Staras, M. Ecological Status and Problems of the Danube River and Its Fish Fauna: A Review. Available online: https://www.researchgate.net/publication/290485507_Ecological_status_and_problems_of_the_Danube_River_and_its_fish_fauna_a_review (accessed on 16 January 2023).
- Polycarbonate|Density, Strength, Melting Point, Thermal Conductivity. Available online: https://material-properties.org/polycarbonate-density-strength-melting-point-thermal-conductivity/ (accessed on 6 December 2022).
- Ethylene -Propylene-Diene Rubber- EPDM with Density 0.87 g/cm3—Indian Products Directory. Available online: https://suppliers.jimtrade.com/81/80508/ethylene_propylenediene_rubber_epdm_with_density_0_87_g_cm3.htm (accessed on 6 December 2022).
- LDPE. Available online: https://www.polymerdatabase.com/Commercial%20Polymers/LDPE.html (accessed on 6 December 2022).
- Poly(ethersulfone). Available online: https://polymerdatabase.com/polymers/polyethersulfone.html (accessed on 6 December 2022).
- Poly(ethylene Terephthalate). Available online: https://www.polymerdatabase.com/polymers/polyethyleneterephthalate.html (accessed on 6 December 2022).
- Poly(tetrafluoroethylene). Available online: https://www.polymerdatabase.com/polymers/polytetrafluoroethylene.html (accessed on 6 December 2022).
- ‘AKROMID® S3 1 Natural (3484)’, Poly-Amide 6.10. Available online: https://akro-plastic.com/productfilter/details/3484/ (accessed on 6 December 2022).
- Polybutylene Terephthalate (PBT)—Properties and Applications—Supplier Data by Goodfellow. Available online: https://www.azom.com/article.aspx?ArticleID=1998 (accessed on 6 December 2022).
- Erwin Telle. Polysulfon. Available online: https://www.telle.de/en/production-products/plastics/material-range/product/detail/polysulfone-psu/ (accessed on 6 December 2022).
- McKeen, L.W. Film Properties of Plastics and Elastomers; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Density of Plastics, Density of PVC. Available online: https://polymeracademy.com/density-of-various-plastic/ (accessed on 6 December 2022).
- Pekárová, P.; Miklánek, P. Flood Regime of Rivers in the Danube River Basin; Ústav Hydrológie SAV: Bratislava, Slovakia, 2019. [Google Scholar] [CrossRef]
- Kooi, M.; van Nes, E.H.; Scheffer, M.; Koelmans, A.A. Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics. Environ. Sci. Technol. 2017, 51, 7963–7971. [Google Scholar] [CrossRef] [PubMed]
- Choy, C.A.; Robison, B.H.; Gagne, T.O.; Erwin, B.; Firl, E.; Halden, R.U.; Hamilton, J.A.; Katija, K.; Lisin, S.E.; Rolsky, C.; et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 2019, 9, 7843. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
Polymer | Density/g∙cm−3 |
---|---|
Ethylene Vinylalcohol Copolymer (EVOH) | 1.9 |
Ethylenevinyl acetate (EVA) | 0.95 |
Polyamid (PA) | 1.01 |
Polybutylene terephthalate (PBT) | 1.31 |
Polyethylene terephtalate (PET) | 1.34 |
Polysulfone (PSU) | 1.42 |
Polytetrafluorethylene (PTFE) | 2.12 |
Polycarbonate (PC) | 1.2 |
Polyether sulfone (PES) | 1.37 |
Polypropylene terephthalate (PPT) | 1.31 |
Polyethylene (PE) | 0.9 |
Polypropylene (PP) | 0.861 |
Filtration Method | Method Subdivision |
---|---|
Net Filtration | Net with pore size: 65 µm |
Net Filtration | Net with pore size: 105 µm |
Cartridge Filtration | |
Depth Samples | particle numbers of all depths (0 m, 3 m, 6 m) averaged |
Depth Samples | particle numbers of 0 m |
Filtration Method | Method Subdivision | Particle Count | CV |
---|---|---|---|
Net Filtration | 65 µm | 95 p∙L−1 | 53% |
Net Filtration | 105 µm | 46 p∙L−1 | 62% |
Cartridge Filtration | 2677 p∙L−1 | 11% | |
Depth Samples | all depths averaged | 50,901 p∙L−1 | 72% |
Depth Samples | 0 m | 31,706 p∙L−1 | 37% |
Cartridge Filtration | Net Filtration (65 µm) | Net Filtration (105 µm) | |||
---|---|---|---|---|---|
Polymer | p∙L−1 | Polymer | p∙L−1 | Polymer | p∙L−1 |
PET | 1378 | PET | 28 | PET | 17 |
PTFE | 575 | EVOH | 27 | EVOH | 14 |
EVOH | 51 | PTFE | 10 | PE | 5 |
PPT | 37 | EVA | 9 | Nylon | 5 |
PVC | 25 | PE | 7 | PTFE | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiefer, T.; Knoll, M.; Fath, A. Comparing Methods for Microplastic Quantification Using the Danube as a Model. Microplastics 2023, 2, 322-333. https://doi.org/10.3390/microplastics2040025
Kiefer T, Knoll M, Fath A. Comparing Methods for Microplastic Quantification Using the Danube as a Model. Microplastics. 2023; 2(4):322-333. https://doi.org/10.3390/microplastics2040025
Chicago/Turabian StyleKiefer, Tim, Martin Knoll, and Andreas Fath. 2023. "Comparing Methods for Microplastic Quantification Using the Danube as a Model" Microplastics 2, no. 4: 322-333. https://doi.org/10.3390/microplastics2040025
APA StyleKiefer, T., Knoll, M., & Fath, A. (2023). Comparing Methods for Microplastic Quantification Using the Danube as a Model. Microplastics, 2(4), 322-333. https://doi.org/10.3390/microplastics2040025