Use of Unmanned Aerial Vehicle Technology in the Protection of Goods of Cultural Interest (GCIs): The Case of the Castle of Cala (Huelva, Spain)
Abstract
:1. Introduction
1.1. Initiation of the Research and Intervention
1.2. Pre-Intervention Status
1.3. Justification for the Solution Adopted in the Project
“Reconstruction in “building style” of entire parts of the building should be avoided. The reconstruction of very limited parts of architectural significance may exceptionally be accepted if it is based on precise and indisputable documentation. If the incorporation of more extensive spatial and functional parts is necessary for the proper use of the building, the language of current architecture must be reflected in them.”
- Recovery of the three sections of walls (located in the N.W., S.W., and S.E.) facing the population, which constitute the collective memory of its past: the ethnographic atavism of the citizens (Figure 6). This operation will be developed by means of a constructive language that allows a double reading of the BIC:
- (a)
- From the point of view of their integration into the environment–territory–landscape, the materials used, textures, and general tones shall not differ from the pre-existing ones.
- (b)
- From the point of view of the authenticity and integrity of the building, the different languages can be clearly differentiated so that no undesirable mimicry effects occur, even over the years.
- The section of wall between towers A and C (facing N.E.) is considered to have its “back turned” to the town that protects the castle and “facing” the hillside with the steepest slope and most distant perspective and, on the other hand, with the aim of achieving the originality of the existing historical remains and thus having a spatial recovery with different materials to the pre-existing ones and conserving the state of “ruin” (obviously after appropriate structural–constructive consolidation) according to archaeological criteria. This action is reflected in the incorporation of a footbridge (Figure 7), thus allowing continuity in the coastal walkway at its original heights (according to the hypotheses of use) and recovering the pre-existing virtual volumetry.
1.4. Use of Innovative Tools in the Conservation and Protection of Heritage
2. Case Study: The Castle of Cala
2.1. Andalusian Defensive Architecture
- Registering properties for computer processing using GIS-type applications, thus allowing databases to be associated with cartographic documentation and systematizing data processing.
- To carry out conservation and restoration actions applying a methodology based on knowledge, through research processes and previous studies, and in the adaptation of projects to the characteristics and circumstances of each building.
2.2. Location and Territorial Articulation
3. Methodology
3.1. General Reconnaissance: Flight No. 1
3.2. Detailed Reconnaissance: Flight No. 2
4. Results
4.1. Digital Elevation Model
4.2. Three-Dimensional Model of Cala Castle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Instituto Juan de Herrera. Documentos Internacionales: Carta de Atenas, Carta de Venecia, Carta Del Restauro, Carta de París, Carta de Amsterdam, Carta de Nairobi, Carta de Toledo y Carta de Ravello. In Cuadernos del Instituto Juan de Herrera de la Escuela de Arquitectura de Madrid; 28.01; Instituto Juan de Herrera: Madrid, Spain, 1998. [Google Scholar]
- ICOMOS. Carta De Cracovia 2000 Principios Para La Conservación Y Restauración Del Patrimonio Construido; ICOMOS: Paris, France, 2000. [Google Scholar]
- Hidalgo Sánchez, F.M. Interoperatividad Entre SIG y BIM Aplicada Al Patrimonio Arquitectónico, Exploración de Posibilidades Mediante La Realización de Un Modelo Digitalizado de La Antigua Iglesia de Santa Lucía y Posterior Análisis; Universidad de Sevilla: Seville, Spain, 2018. [Google Scholar]
- Pepe, M.; Alfio, V.S.; Costantino, D. UAV Platforms and the SfM-MVS Approach in the 3D Surveys and Modelling: A Review in the Cultural Heritage Field. Appl. Sci. 2022, 12, 12886. [Google Scholar] [CrossRef]
- Coloma Picó, E. Tecnologia BIM per Al Disseny Arquitectònic; Universitat Politècnica de Catalunya: Barcelona, Spain, 2011. [Google Scholar]
- Raguseo, E. Big Data Technologies: An Empirical Investigation on Their Adoption, Benefits and Risks for Companies. Int. J. Inf. Manag. 2018, 38, 187–195. [Google Scholar] [CrossRef]
- Pinto Puerto, F.S. La Tutela Sostenible Del Patrimonio Cultural a Través de Modelos Digitales BIM y SIG Como Contribución Al Conocimiento e Innovación Social. PH Boletín Del Inst. Andal. Del Patrim. Histórico 2018, 26, 27–29. [Google Scholar] [CrossRef]
- Tibaut, A.; Zazula, D. Sustainable Management of Construction Site Big Visual Data. Sustain. Sci. 2018, 13, 1311–1322. [Google Scholar] [CrossRef]
- Rebolj, D.; Tibaut, A.; Čuš-Babič, N.; Magdič, A.; Podbreznik, P. Development and Application of a Road Product Model. Autom. Constr. 2008, 17, 719–728. [Google Scholar] [CrossRef]
- Gandomi, A.; Haider, M. Beyond the Hype: Big Data Concepts, Methods, and Analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [Google Scholar] [CrossRef]
- Mandičák, T.; Behúnová, A.; Mésároš, P.; Knapčíková, L. Current State of Knowledge—Based Systems Used in Architecture, Engineering and Construction. TEM J. 2020, 9, 716–721. [Google Scholar] [CrossRef]
- Llopis, J.P. Sistemas de Información Geográfica Aplicados a La Gestión Del Territorio, 2nd ed.; Editorial Club Universitario: San Vicente, Alicante, Spain, 2008. [Google Scholar]
- Olaya, V. Sistemas de Información Geográfica. Cuad. Int. Tecnol. Para el Desarro. Hum. 2009, 8, 15. [Google Scholar]
- Ferreira-Lopes, P.W.; Rolazem, J.F.M. Historical sdi, thematic maps and analysis of a complex network of medieval towers (13th–15th century) in the moorish strip. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–4, 177–183. [Google Scholar] [CrossRef]
- Zhu, J.; Wright, G.; Wang, J.; Wang, X. A Critical Review of the Integration of Geographic Information System and Building Information Modelling at the Data Level. ISPRS Int. J. Geo-Inf. 2018, 7, 66. [Google Scholar] [CrossRef]
- Pamart, A.; Abergel, V.; de Luca, L.; Veron, P. Toward a Data Fusion Index for the Assessment and Enhancement of 3D Multimodal Reconstruction of Built Cultural Heritage. Remote Sens. 2023, 15, 2408. [Google Scholar] [CrossRef]
- Mangiameli, M.; Muscato, G.; Mussumeci, G.; Milazzo, C. A GIS Application for UAV Flight Planning. IFAC Proc. Vol. 2013, 46, 147–151. [Google Scholar] [CrossRef]
- Petras, V.; Petrasova, A.; Jeziorska, J.; Mitasova, H. Processing uav and lidar point clouds in grass gis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 945–952. [Google Scholar] [CrossRef]
- Zollini, S.; Alicandro, M.; Dominici, D.; Quaresima, R.; Giallonardo, M. UAV Photogrammetry for Concrete Bridge Inspection Using Object-Based Image Analysis (OBIA). Remote Sens. 2020, 12, 3180. [Google Scholar] [CrossRef]
- Haarbrink, R.; Koers, E. Helicopter UAV For Photogrammetry And Rapid Response. Int. Achives Photogramm. Remote Sens. Spat. Inf. Sci. Belgium 2006, XXXVI, 2–5. [Google Scholar]
- Nikulin, A.; de Smet, T.; Baur, J.; Frazer, W.; Abramowitz, J. Detection and Identification of Remnant PFM-1 ‘Butterfly Mines’ with a UAV-Based Thermal-Imaging Protocol. Remote Sens. 2018, 10, 1672. [Google Scholar] [CrossRef]
- Madurapperuma, B.; Lamping, J.; McDermott, M.; Murphy, B.; McFarland, J.; Deyoung, K.; Smith, C.; MacAdam, S.; Monroe, S.; Corro, L.; et al. Factors Influencing Movement of the Manila Dunes and Its Impact on Establishing Non-Native Species. Remote Sens. 2020, 12, 1536. [Google Scholar] [CrossRef]
- Kameyama, S.; Sugiura, K. Effects of Differences in Structure from Motion Software on Image Processing of Unmanned Aerial Vehicle Photography and Estimation of Crown Area and Tree Height in Forests. Remote Sens. 2021, 13, 626. [Google Scholar] [CrossRef]
- Frodella, W.; Elashvili, M.; Spizzichino, D.; Gigli, G.; Adikashvili, L.; Vacheishvili, N.; Kirkitadze, G.; Nadaraia, A.; Margottini, C.; Casagli, N. Combining InfraRed Thermography and UAV Digital Photogrammetry for the Protection and Conservation of Rupestrian Cultural Heritage Sites in Georgia: A Methodological Application. Remote Sens. 2020, 12, 892. [Google Scholar] [CrossRef]
- Xiang, H.; Tian, L. Development of a Low-Cost Agricultural Remote Sensing System Based on an Autonomous Unmanned Aerial Vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [Google Scholar] [CrossRef]
- Liu, X.; Chen, P.; Tong, X.; Liu, S.; Liu, S.; Hong, Z.; Li, L.; Luan, K. UAV-Based Low-Altitude Aerial Photogrammetric Application in Mine Areas Measurement. In Proceedings of the IEEE 2012 Second International Workshop on Earth Observation and Remote Sensing Applications, Shanghai, China, 8–11 June 2012; pp. 240–242. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Walker, R.; Hayward, R.; Zhang, J. Towards Automatic Power Line Detection for a UAV Surveillance System Using Pulse Coupled Neural Filter and an Improved Hough Transform. Mach. Vis. Appl. 2010, 21, 677–686. [Google Scholar] [CrossRef]
- Zarnowski, A.; Banaszek, A.; Banaszek, S. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images. Rep. Geod. Geoinform. 2016, 99, 54–63. [Google Scholar] [CrossRef]
- Orihuela, A.; Molina-Fajardo, M.A. Uav Photogrammetry Surveying for Sustainable Conservation: The Case of Mondújar Castle (Granada, Spain). Sustainability 2021, 13, 24. [Google Scholar] [CrossRef]
- Muñoz-Nieto, A.L.; Rodriguez-Gonzalvez, P.; Gonzales-Aguilera, D.; Fernandez-Hernandez, J.; Gomez-Lahoz, J.; Picon-Cabrera, I.; Herrero-Pascual, J.S.; Hernandez-Lopez, D. UAV Archaeological Reconstruction: The Study Case of Chamartin Hillfort (Avila, Spain). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II–5, 259–265. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, L.; Shen, Y.; Li, F.; Wang, Q.; Wang, R. Tridimensional Reconstruction Applied to Cultural Heritage with the Use of Camera-Equipped UAV and Terrestrial Laser Scanner. Remote Sens. 2014, 6, 10413–10434. [Google Scholar] [CrossRef]
- Zwirowicz-Rutkowska, A.; Michalik, A. The Use of Spatial Data Infrastructure in Environmental Management:An Example from the Spatial Planning Practice in Poland. Environ. Manag. 2016, 58, 619–635. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Moon, H.; Jung, H. Drone-Based Parcel Delivery Using the Rooftops of City Buildings: Model and Solution. Appl. Sci. 2020, 10, 4362. [Google Scholar] [CrossRef]
- Remondino, F.; Rizzi, A.; Girardi, S.; Petti, F.M.; Avanzini, M. 3D Ichnology—Recovering Digital 3D Models of Dinosaur Footprints. Photogramm. Rec. 2010, 25, 266–282. [Google Scholar] [CrossRef]
- El-Hakim, S.; Gonzo, L.; Voltolini, F.; Girardi, S.; Rizzi, A.; Remondino, F.; Whiting, E. Detailed 3D Modelling of Castles. Int. J. Archit. Comput. 2007, 5, 199–220. [Google Scholar] [CrossRef]
- Akca, D.; Remondino, F.; Novák, D.; Hanusch, T.; Schrotter, G.; Grün, A. Recording and Modeling of Cultural Heritage Objects with Coded Structured Light Projection Systems. In 2nd International Conference on Remote Sensing in Archaeology; Institute of Geodesy and Photogrammetry, ETH Zurich: Zürich, Switzerland, 2006; pp. 375–382. [Google Scholar] [CrossRef]
- Marić, I.; Šiljeg, A.; Domazetović, F. Geospatial Technologies in 3D Documentation and Promotion of Cultural Heritage—Example of Fortica Fortress on the Island of Pag. Geod. Glas. 2019, 53, 19–44. [Google Scholar] [CrossRef]
- Brumana, R.; Oreni, D.; Alba, M.; Barazzetti, L.; Cuca, B.; Scaioni, M. Panoramic UAV Views for Landscape Heritage Analysis Integrated with Historical Maps Atlases. Geoinform. FCE CTU 2012, 9, 39–50. [Google Scholar] [CrossRef]
- Pádua, L.; Adão, T.; Hruška, J.; Marques, P.; Sousa, A.; Morais, R.; Lourenço, J.M.; Sousa, J.J.; Peres, E. UAS-Based Photogrammetry of Cultural Heritage Sites: A Case Study Addressing Chapel of Espírito Santo and Photogrammetric Software Comparison. In ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2018; pp. 72–76. [Google Scholar] [CrossRef]
- Pereira, L.G.; Fernandez, P.; Mourato, S.; Matos, J.; Mayer, C.; Marques, F. Quality Control of Outsourced LiDAR Data Acquired with a UAV: A Case Study. Remote Sens. 2021, 13, 419. [Google Scholar] [CrossRef]
- Kršák, B.; Blišťan, P.; Pauliková, A.; Puškárová, P.; Kovanič, L.; Palková, J.; Zelizňaková, V. Use of Low-Cost UAV Photogrammetry to Analyze the Accuracy of a Digital Elevation Model in a Case Study. Measurement 2016, 91, 276–287. [Google Scholar] [CrossRef]
- Dubbini, M.; Curzio, L.I.; Campedelli, A. Digital Elevation Models from Unmanned Aerial Vehicle Surveys for Archaeological Interpretation of Terrain Anomalies: Case Study of the Roman Castrum of Burnum (Croatia). J. Archaeol. Sci. Rep. 2016, 8, 121–134. [Google Scholar] [CrossRef]
- Enríquez, C.; Jurado, J.M.; Bailey, A.; Callén, D.; Collado, M.J.; Espina, G.; Marroquín, P.; Oliva, E.; Osla, E.; Ramos, M.I.; et al. The UAS-Based 3D Image Characterization of Mozarabic Church Ruins in Bobastro (Malaga), Spain. Remote Sens. 2020, 12, 2377. [Google Scholar] [CrossRef]
- Jones, M.; Stenseke, M. (Eds.) The European Landscape Convention Challenges of Participation, 1st ed.; Landscape Series, 13; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Zoran V., A. European Landscape Convention. Zb. Rad. 2015, 49, 457–467. [Google Scholar] [CrossRef]
- Rodríguez Martínez, F. Convención Europea Del Paisaje. Cuad. Geográficos La Univ. Granada 1999, 29, 157–170. [Google Scholar]
- Yolanda, J.O. La Convención Europea Del Paisaje. Desarrollos Prácticos. Cuad. Geogr. 2008, 43, 20–31. [Google Scholar]
- Prieur, M.; Sánchez Sáez, A.J. La Convención Europea Del Paisaje. Rev. Andal. De Adm. Pública 2003, 50, 19–34. [Google Scholar]
- Herrero-Tejedor, T.R.; Arqués Soler, F.; López-Cuervo Medina, S.; de la O Cabrera, M.R.; Martín Romero, J.L. Documenting a Cultural Landscape Using Point-Cloud 3d Models Obtained with Geomatic Integration Techniques. The Case of the El Encín Atomic Garden, Madrid (Spain). PLoS ONE 2020, 15, e0235169. [Google Scholar] [CrossRef]
- Junta de Andalucía. Plan de Arquitectura Defensiva de Andalucía (PADA); Junta de Andalucía: Andalusia, Spain, 2009. [Google Scholar]
- Fernández Cacho, S.; Fernández-Baca, R.; Fernández, V. Paisajes y Patrimonio Cultural En Andalucía: Tiempo, Usos e Imágenes; Instituto Andaluz del Patrimonio Histórico (IAPH), Ed.; Consejería de Cultura, Junta de Andalucía: Sevilla, Spain, 2010. [Google Scholar]
- Molina Rozalem, J.F. Arquitectura Defensiva En Las Fronteras Del Reino de Sevilla Durante La Baja Edad Media Implantación Territorial de Las Fortificaciones y Análisis de La Banda Morisca; Universidad de Sevilla: Sevilla, Spain, 2014. [Google Scholar]
- Herrera Limones, R. Intervención En El Castillo de Cala ¿2001-2011?: La Transdisciplinariedad Para Un Hacer Arquitectónico Patrimonial. Rev. PH 2012, 20, 91–113. [Google Scholar] [CrossRef]
- Cumplido Rodríguez, C. Arquitectura Defensiva de La Banda Gallega: Castillo de Aracena & Castillo Del Cuerno; Universidad de Sevilla: Sevilla, Spain, 2019. [Google Scholar]
- Bomba, E.R.; Jimenez, T.R. El Castillo de Cala (Huelva): Nuevos Datos Sobre Su Cronología y La Evolución Constructiva de Las Edificaciones Bajomedievales de La Sierra de Huelva. In Proceedings of the VII Encuentro Arqueol. del suroeste Peninsula; Ayuntamiento de Aroche: Aroche, Spain, 2015. [Google Scholar]
- Fernández Cacho, S.; Fernández Salinas, V.; Hernández León, E.; López Martín, E.; Quintero Morón, V.; Rodrigo Cámara, J.M.; Zarza Balluguera, D. Sierra Morena de Huelva y Riveras de Huelva y Cala. Consejería de Cultura: Sevilla, Spain, 2010; pp. 463–479. [Google Scholar]
- Valverde Álvarez, E. Provincia de Huelva; Biblioteca Universal: Madrid, Spain, 1880. [Google Scholar]
- Bellin, J.N. Le Portugal et Ses Frontieres Avec l’Espagne; Chez M. Bellin: Paris, France, 1762. [Google Scholar]
- Instituto Geográfico Nacional. Andalucía. Mapas Generales. (1640–1650). 1994. Available online: https://www.ign.es/web/catalogo-cartoteca/resources/html/017044.html (accessed on 15 March 2024).
- Casquete de Prado Sagrera, N. Los Castillos de La Sierra Norte de Sevilla En La Baja Edad Media: Aproximación Histórica; Publicaciones de la Diputación Provincial de Sevilla. Sección Historia. Serie 1a 42; Diputación Provincial de Sevilla: Sevilla, Spain, 1993. [Google Scholar]
- Pérez Macias, J. La Banda Gallega; Universidad de Huelva: Huelva, Spain, 2016. [Google Scholar]
- Romero Bomba, E.; Rivera Jiménez, T. Los Castillos de La Banda Gallega: Aportaciones a Su Conocimiento Desde La Arqueología. In Paisajes, Tiempo y Memoria: Acercamientos a la Historia de Andalucía; Pérez Macías, J., Carriazo Rubio, J., Gavilán Ceballos, B., Eds.; Uhues Piblicaciones: Huelva, Spain, 2012; pp. 99–128. [Google Scholar]
- Duclos Bautista, G. Arquitectura Defensiva En La Frontera de Andalucía: Las Fortificaciones Abaluartadas de La Raya Con Portugal; Huelva, Spain, 2010. Available online: https://www.fortificacionesenlaraya.eu/ (accessed on 15 March 2024).
- Romero Bomba, E.; Rivera Jiménez, T.; Fondevilla Aparicio, J.J. Fortificaciones Bajomedievales de La Banda Gallega: Caracterización Del Itinerario Cultural Transfronterizo; Rivera Jiménez, T., Fondevilla Aparicio, J.J., Eds.; Junta de Andalucía, Consejería de Cultura: Sevilla, Spain, 2018. [Google Scholar]
- Garduza-González, S.; Gómez-Castañeda, F.; Moreno-Cadenas, J.A.; Ponce-Ponce, V.H. Prototipo Sensor de Imagen CMOS Con Arquitectura de Modulación a Nivel Columna. Ing. Investig. y Tecnol. 2016, 17, 237–250. [Google Scholar] [CrossRef]
- Barbasiewicz, A.; Widerski, T.; Daliga, K. The Analysis of the Accuracy of Spatial Models Using Photogrammetric Software: Agisoft Photoscan and Pix4D. E3S Web Conf. 2018, 26, 00012. [Google Scholar] [CrossRef]
- Gabriela, W.; Jakub, Ł. Use of Close-Range Photogrammetry and UAV in Documentation of Architecture Monuments. E3S Web Conf. 2018, 71, 00017. [Google Scholar] [CrossRef]
- Kaimaris, D.; Patias, P.; Sifnaiou, M. UAV and the Comparison of Image Processing Software. Int. J. Intell. Unmanned Syst. 2017, 5, 18–27. [Google Scholar] [CrossRef]
- Jebur, A.; Abed, F.; Mohammed, M. Assessing the Performance of Commercial Agisoft PhotoScan Software to Deliver Reliable Data for Accurate 3D Modelling. MATEC Web Conf. 2018, 162, 03022. [Google Scholar] [CrossRef]
- Li, X.Q.; Chen, Z.A.; Zhang, L.T.; Jia, D. Construction and Accuracy Test of a 3D Model of Non-Metric Camera Images Using Agisoft PhotoScan. Procedia Environ. Sci. 2016, 36, 184–190. [Google Scholar] [CrossRef]
- Sona, G.; Pinto, L.; Pagliari, D.; Passoni, D.; Gini, R. Experimental Analysis of Different Software Packages for Orientation and Digital Surface Modelling from UAV Images. Earth Sci. Inform. 2014, 7, 97–107. [Google Scholar] [CrossRef]
- Caminos Libres. Registro de Vias Pecuarias de Huelva. Available online: https://caminoslibres.es/inventarios-de-vas-pecuarias/registro-vias-pecuarias-de-andalucia/ (accessed on 15 March 2024).
Features | ||
Fixed wing | Aircraft | It is based on the fixed-wing principle for lift. May or may not have any propulsion system such as propellers or turbines. |
Rotating wing | Helicopter | Its lift principle is based on rotating wings. The difference with multirotors is that it consists of a single sustaining rotor, which implies the existence of an anti-rotor. |
Multirotor | Like the helicopter, the multirotor bases its lift on the principle of rotating wings. The difference is that there is more than one rotor, making the anti-rotor unnecessary. | |
Advantages | ||
Fixed wing | Aircraft | Greater autonomy. |
They can achieve higher travel speeds. | ||
Rotating wing | Helicopter | It allows stationary flights. |
It has total freedom of movement in all three axes. | ||
Multirotor | Greater stability. | |
Greater mechanical simplicity compared to the helicopter. | ||
Disadvantages | ||
Fixed wing | Aircraft | It does not allow stationary flights. |
Slow speed on course changes. | ||
Rotating wing | Helicopter | Less autonomy. |
Increased mechanical complexity, greater likelihood of breakdowns, and higher maintenance costs. | ||
Multirotor | Reduced range compared to fixed-wing aircraft. | |
Increased mechanical complexity compared to fixed-wing aircraft |
UAV | Multirotor-DJI Mavic 2 |
Date | 27 June 2020 |
Type | Grid |
Flight time | 16 min |
Dimensions | 399 m × 856 m |
Number of images | 315 |
Overlap | 80–70% |
Camera angle | 90° |
Altitude | 115 m |
Path | 8011 m |
UAV | Multirotor-DJI Mavic 2 |
Date | 27 June 2020 |
Type | Double Grid |
Flight time | 14 min |
Dimensions | 102 m × 125 m |
Number of images | 330 |
Overlap | 80–70% |
Camera angle | 70° |
Altitude | 30 m |
Path | 2169 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Camarena, G.M.; Herrera-Limones, R.; López-Escamilla, Á. Use of Unmanned Aerial Vehicle Technology in the Protection of Goods of Cultural Interest (GCIs): The Case of the Castle of Cala (Huelva, Spain). Architecture 2024, 4, 247-266. https://doi.org/10.3390/architecture4020015
Núñez-Camarena GM, Herrera-Limones R, López-Escamilla Á. Use of Unmanned Aerial Vehicle Technology in the Protection of Goods of Cultural Interest (GCIs): The Case of the Castle of Cala (Huelva, Spain). Architecture. 2024; 4(2):247-266. https://doi.org/10.3390/architecture4020015
Chicago/Turabian StyleNúñez-Camarena, Gina M., Rafael Herrera-Limones, and Álvaro López-Escamilla. 2024. "Use of Unmanned Aerial Vehicle Technology in the Protection of Goods of Cultural Interest (GCIs): The Case of the Castle of Cala (Huelva, Spain)" Architecture 4, no. 2: 247-266. https://doi.org/10.3390/architecture4020015
APA StyleNúñez-Camarena, G. M., Herrera-Limones, R., & López-Escamilla, Á. (2024). Use of Unmanned Aerial Vehicle Technology in the Protection of Goods of Cultural Interest (GCIs): The Case of the Castle of Cala (Huelva, Spain). Architecture, 4(2), 247-266. https://doi.org/10.3390/architecture4020015