Extended Convergence for Two Sixth Order Methods under the Same Weak Conditions
Abstract
:1. Introduction
2. LCA
- (i)
- ∃ function , which is non-decreasing and continuous such that the function
- (ii)
- ∃ a function , which is non-decreasing and continuous such that the function
- (iii)
- The function has a smallest positive root , where the function is given asSet , where .
- (iv)
- The functions have smallest positive roots , where are given by
- (H1)
- ∃ a solution of the equation such that .
- (H2)
- for each .Set .
- (H3)
- for each .
- (H4)
- , where d is specified later.
- (i)
- ∃ a solution for some .
- (ii)
- The hypothesis () holds on .
- (iii)
- There exists such that
3. SLA
- ()
- There exists an element and a parameter with and .
- ()
- for each .Set .
- ()
- for each .
- ()
- ()
- , where or depending on which method is used.
- (i)
- ∃ a solution of (1) for some .
- (ii)
- The condition () holds on the ball .
- (1)
- The parameter can replace or in the Theorem 3.
- (2)
- Under conditions of Theorem 3, set or in the Proposition 2.
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Set of Linear operators from X to Y | |
Scalar sequence |
References
- Cordero, A.; Gómez, E.; Torregrosa, J.R. Efficient high-order iterative methods for solving nonlinear systems and their application on heat conduction problems. Complexity 2017, 2017, 6457532. [Google Scholar] [CrossRef] [Green Version]
- Babajee, D.K.R. On the Kung-Traub conjecture for iterative methods for solving quadratic equations. Algorithms 2016, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.R.; Sharma, R.; Kalra, N. A novel family of composite Newton–Traub methods for solving systems of nonlinear equations. Appl. Math. Comput. 2015, 269, 520–535. [Google Scholar] [CrossRef]
- Kung, H.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. ACM 1974, 21, 643–651. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Al-Said, E.; Waseem, M. Some new iterative methods for nonlinear equations. Math. Probl. Eng. 2010, 2010, 198943. [Google Scholar] [CrossRef] [Green Version]
- Herceg, D.; Herceg, D. A family of methods for solving nonlinear equations. Appl. Math. Comput. 2015, 259, 882–895. [Google Scholar] [CrossRef]
- Lotfi, T.; Bakhtiari, P.; Cordero, A.; Mahdiani, K.; Torregrosa, J.R. Some new efficient multipoint iterative methods for solving nonlinear systems of equations. Int. J. Comput. Math. 2015, 92, 1921–1934. [Google Scholar] [CrossRef] [Green Version]
- Waseem, M.; Noor, M.A.; Noor, K.I. Efficient method for solving a system of nonlinear equations. Appl. Math. Comput. 2016, 275, 134–146. [Google Scholar] [CrossRef]
- Argyros, I.K.; Sharma, D.; Argyros, C.I.; Parhi, S.K.; Sunanda, S.K. Extended iterative schemes based on decomposition for nonlinear models. J. Appl. Math. Comput. 2022, 68, 1485–1504. [Google Scholar] [CrossRef]
- Argyros, C.I.; Argyros, I.K.; Regmi, S.; John, J.A.; Jayaraman, J. Semi-Local Convergence of a Seventh Order Method with One Parameter for Solving Non-Linear Equations. Foundations 2022, 2, 827–838. [Google Scholar] [CrossRef]
- Argyros, I.K.; Regmi, S.; Shakhno, S.; Yarmola, H. Perturbed Newton Methods for Solving Nonlinear Equations with Applications. Symmetry 2022, 14, 2206. [Google Scholar] [CrossRef]
- Argyros, I.K. The Theory and Applications of Iteration Methods, 2nd ed.; CRC Press/Taylor and Francis Publishing Group Inc.: Boca Raton, FL, USA, 2022. [Google Scholar]
- John, J.A.; Jayaraman, J.; Argyros, I.K. Local Convergence of an Optimal Method of Order Four for Solving Non-Linear System. Int. J. Appl. Comput. Math. 2022, 8, 194. [Google Scholar] [CrossRef]
- Hammad, H.; Cholamjiak, W.; Yambangwai, D.; Dutta, H. A modified shrinking projection methods for numerical reckoning fixed points of G-nonexpansive mappings in Hilbert spaces with graphs. Miskolc Math. Notes 2019, 20, 941–956. [Google Scholar] [CrossRef]
- Hammad, H.A.; Rehman, H.U.; De la Sen, M. Shrinking projection methods for accelerating relaxed inertial Tseng-type algorithm with applications. Math. Probl. Eng. 2020, 2020, 7487383. [Google Scholar] [CrossRef]
- Tuyen, T.M.; Hammad, H.A. Effect of shrinking projection and CQ-methods on two inertial forward–backward algorithms for solving variational inclusion problems. In Rendiconti del Circolo Matematico di Palermo Series 2; Springer: Cham, Switzerland, 2021; pp. 1–15. [Google Scholar]
- Abro, H.A.; Shaikh, M.M. A new time-efficient and convergent nonlinear solver. Appl. Math. Comput. 2019, 355, 516–536. [Google Scholar] [CrossRef]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis in Normed Spaces; Pergamon Press: Oxford, UK, 1964. [Google Scholar]
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
0 | 0.0274273 | 0.060139 | 0.147707 | 0.1489201 | 0.1498202 | 0.1498211 | 0.1498211 | |
0.0153889 | 0.0325636 | 0.0728308 | 0.182755 | 0.1847021 | 0.1848412 | 0.1848423 | 0.1848423 | |
0 | 0.013713 | 0.030068 | 0.0738499 | 0.0740089 | 0.07412632 | 0.0742212 | 0.0742212 |
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
0 | 0.0556283 | 0.0934655 | 0.114921 | 0.123201 | 0.124746 | 0.124812 | 0.124813 | 0.124813 | |
0.0170833 | 0.0403661 | 0.0547196 | 0.0610351 | 0.0623482 | 0.0624062 | 0.0624063 | 0.0624063 | 0.0624063 | |
0.0188072 | 0.0691335 | 0.101844 | 0.118574 | 0.123952 | 0.124779 | 0.124813 | 0.124813 | 0.124813 | |
0 | 0.0271357 | 0.0455929 | 0.0560588 | 0.0600982 | 0.0608519 | 0.0608841 | 0.0608842 | 0.0608842 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, I.K.; Regmi, S.; John, J.A.; Jayaraman, J. Extended Convergence for Two Sixth Order Methods under the Same Weak Conditions. Foundations 2023, 3, 127-139. https://doi.org/10.3390/foundations3010012
Argyros IK, Regmi S, John JA, Jayaraman J. Extended Convergence for Two Sixth Order Methods under the Same Weak Conditions. Foundations. 2023; 3(1):127-139. https://doi.org/10.3390/foundations3010012
Chicago/Turabian StyleArgyros, Ioannis K., Samundra Regmi, Jinny Ann John, and Jayakumar Jayaraman. 2023. "Extended Convergence for Two Sixth Order Methods under the Same Weak Conditions" Foundations 3, no. 1: 127-139. https://doi.org/10.3390/foundations3010012
APA StyleArgyros, I. K., Regmi, S., John, J. A., & Jayaraman, J. (2023). Extended Convergence for Two Sixth Order Methods under the Same Weak Conditions. Foundations, 3(1), 127-139. https://doi.org/10.3390/foundations3010012