Previous Issue
Volume 4, December
 
 

Foundations, Volume 5, Issue 1 (March 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 640 KiB  
Article
Exploring Order–Disorder Transitions Using a Two-State Master Equation
by Angelo Plastino and Diana Monteoliva
Foundations 2025, 5(1), 3; https://doi.org/10.3390/foundations5010003 - 14 Jan 2025
Viewed by 348
Abstract
In this study, we explore the order–disorder transition in the dynamics of a straightforward master equation that describes the evolution of a probability distribution between two states, p1 and p2 (with p1+p2=1). We focus [...] Read more.
In this study, we explore the order–disorder transition in the dynamics of a straightforward master equation that describes the evolution of a probability distribution between two states, p1 and p2 (with p1+p2=1). We focus on (1) the behavior of entropy S, (2) the distance D from the uniform distribution (p1=p2=1/2), and (3) the free energy F. To facilitate understanding, we introduce two price-ratios: ηS=dS/dtdF/dt and ηD=dD/dtdF/dt. They respectively define the energetic costs of modifying (1) S and (2) D. Our findings indicate that both energy costs diverge to plus and minus infinity as the system approaches the uniform distribution, marking a critical transition point where the master equation temporarily loses its physical meaning. Following this divergence, the system stabilizes itself into a new well-behaved regime, reaching finite values that signify a new steady state. This two-regime behavior showcases the intricate dynamics of simple probabilistic systems and offers valuable insights into the relationships between entropy, distance in probability space, and free energy within the framework of statistical mechanics, making it a useful case study that highlights the underlying principles of the system’s evolution and equilibrium. Our discussion revolves about the order–disorder contrast that is important in various scientific disciplines, including physics, chemistry, and material science, and even in broader contexts like philosophy and social sciences. Full article
(This article belongs to the Section Mathematical Sciences)
Show Figures

Figure 1

16 pages, 491 KiB  
Article
Linking Error Estimation in Stocking–Lord Linking
by Alexander Robitzsch
Foundations 2025, 5(1), 2; https://doi.org/10.3390/foundations5010002 - 27 Dec 2024
Viewed by 483
Abstract
Stocking–Lord (SL) linking is a widely used linking method based on item response theory (IRT). This article examines the variability in SL linking parameter estimates within the two-parameter logistic (2PL) model. The uncertainty in SL linking arises from the sampling variability (standard error) [...] Read more.
Stocking–Lord (SL) linking is a widely used linking method based on item response theory (IRT). This article examines the variability in SL linking parameter estimates within the two-parameter logistic (2PL) model. The uncertainty in SL linking arises from the sampling variability (standard error) and item selection (linking error), which can induce variability due to random differential item functioning (DIF). Three linking error estimation approaches are compared in this paper: the conventional jackknife linking error method, a newly developed approximate jackknife linking error method, and a Taylor approximation-based estimate. Simulation studies showed that the approximate jackknife method closely aligns with the traditional jackknife linking error method and outperforms the linking error estimation approach based on Taylor approximation. The adequacy of coverage rates for SL linking parameter estimates was also assessed using estimates of the total error. Results from a simulation study demonstrate that the bias-corrected total error provides superior coverage rates compared to both the conventional total error and the standard error, which does not account for item-related uncertainty due to random DIF. Full article
(This article belongs to the Section Mathematical Sciences)
Show Figures

Figure 1

25 pages, 3400 KiB  
Article
A Time-(Anti)symmetric Approach to the Double Solution Theory
by Pierre Jamet and Aurélien Drezet
Foundations 2025, 5(1), 1; https://doi.org/10.3390/foundations5010001 - 25 Dec 2024
Viewed by 411
Abstract
In this work, we present a new theoretical approach to interpreting and reproducing quantum mechanics using trajectory-guided wavelets. Inspired by the 1925 work of Louis de Broglie, we demonstrate that pulses composed of a difference between a delayed wave and an advanced wave [...] Read more.
In this work, we present a new theoretical approach to interpreting and reproducing quantum mechanics using trajectory-guided wavelets. Inspired by the 1925 work of Louis de Broglie, we demonstrate that pulses composed of a difference between a delayed wave and an advanced wave (known as antisymmetric waves) are capable of following quantum trajectories predicted by the de Broglie–Bohm theory (also known as Bohmian mechanics). Our theory reproduces the main results of orthodox quantum mechanics and unlike Bohmian theory, is local in the Bell sense. We show that this is linked to the superdeterminism and past–future (anti)symmetry of our theory. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

Previous Issue
Back to TopTop