The Impact of Liver Abscesses on Performance and Carcass Traits in Beef Cattle: A Meta-Analysis Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
2.2. Statistical Analysis
2.2.1. Weighted Mean Difference and Publication Bias
2.2.2. Meta-Regression and Subgroup Analysis
- Liver abscess score A or A+, where A= small abscesses (n = 1–2) or well-organized abscesses (n = 2–4) usually under one inch in diameter (the remainder of the liver looks healthy); A+ = large abscesses (n ≥ 1), together with inflammation of liver tissue surrounding the abscess (often, portions of the diaphragm are adhered to the surface of the liver and have to be trimmed to separate the liver from the carcass);
- Liver abscess incidence (2.4–4.8% or 6.3–9.4%);
- Levels of diet concentrate (840–900 g/kg or > 900 g/kg DM).
2.2.3. Standardized Mean Difference
3. Results
3.1. Feed Intake, Animal Performance, and Carcass Parameters
3.2. Marbling Score and United States Department of Agriculture Beef Yield Grade
3.3. Meta-Regression and Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- OECD; FAO. OECD-FAO Agricultural Outlook 2020–2029; FAO: Rome, Italy; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Chengappa, M.M. Liver abscesses in feedlot cattle: A review. Anim. Sci. J. 1998, 76, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Amachawadi, R.G.; Nagaraja, T.G. liver abscesses in cattle: A review of incidence in Holsteins and of bacteriology and vaccine approaches to control in feedlot cattle. Anim. Sci. J. 2016, 94, 1620–1632. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Fernandez, M.V.; Daniel, J.B.; Seymour, D.J.; Kvidera, S.K.; Bester, Z.; Doelman, J.; Martín-Tereso, J. Targeting the hindgut to improve health and performance in cattle. Animals 2020, 10, 1817. [Google Scholar] [CrossRef]
- Khafipour, E.; Li, S.; Plaizier, J.C.; Krause, D.O. Rumen Microbiome Composition Determined Using Two Nutritional Models of Subacute Ruminal Acidosis. Appl. Environ. Microbiol. 2009, 75, 7115. [Google Scholar] [CrossRef]
- Jennings, J.S.; Amachawadi, R.G.; Narayanan, S.K.; Nagaraja, T.G.; Tedeschi, L.O.; Smith, W.N.; Lawrence, T.E. Effects of corn stalk inclusion and tylosin on performance, rumination, ruminal papillae morphology, and gut pathogens associated with liver abscesses from finishing beef steers. Livest. Sci. 2021, 251, 104623. [Google Scholar] [CrossRef]
- Pinnell, L.J.; Whitlow, C.W.; Huebner, K.L.; Bryant, T.C.; Martin, J.; Belk, K.E.; Morley, P.S. Not All Liver Abscesses Are Created Equal: The Impact of Tylosin and Antibiotic Alternatives on Bovine Liver Abscess Microbial Communities and a First Look at Bacteroidetes-Dominated Communities. Front. Microbiol. 2022, 13, 882419. [Google Scholar] [CrossRef]
- Brown, T.R.; Lawrence, T.E. Association of liver abnormalities with carcass grading performance and value. Anim. Sci. J. 2010, 88, 4037–4043. [Google Scholar] [CrossRef]
- Huntington, G. Energy metabolism in the digestive tract and liver of cattle: Influence of physiological state and nutrition. Reprod. Nutr. Dev. 1990, 30, 35–47. [Google Scholar] [CrossRef]
- Brink, D.R.; Lowry, S.R.; Stock, R.A.; Parrott, J.C. Severity of liver abscesses and efficiency of feed utilization of feedlot cattle. Anim. Sci. J. 1990, 68, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Batista, L.F.; Holland, B.P. Liver abnormalities in cattle: Effect of liver abscessation on growth and productivity of cattle. Vet. Clin. Food Anim. Pract. 2022, 38, 347–360. [Google Scholar] [CrossRef]
- Harris, M.K.; Eastwood, L.C.; Boykin, C.A.; Arnold, A.N.; Gehring, K.B.; Hale, D.S.; Stelzleni, A.M. National beef quality audit–2016: Assessment of cattle hide characteristics, offal condemnations, and carcass traits to determine the quality status of the market cow and bull beef industry. Transl. Anim. Sci. 2018, 2, 37–49. [Google Scholar] [CrossRef]
- Brown, H.; Bing, R.F.; Grueter, H.P.; McAskill, J.W.; Cooley, C.O.; Rathmacher, R.P. Tylosin and chlortetracycline for the prevention of liver abscesses, improved weight gains and feed efficiency in feedlot cattle. Anim. Sci. J. 1975, 40, 207–213. [Google Scholar] [CrossRef]
- Elanco. Elanco Liver Cheek System. 2019. Available online: https://www.elanco.us/liver-check-service (accessed on 25 November 2023).
- Reinhardt, C.D.; Hubbert, M.E. Control of liver abscesses in feedlot cattle: A review. Prof. Anim. Sci. 2015, 31, 101–108. [Google Scholar] [CrossRef]
- Calderon-Cortes, J.F.; Zinn, R.A. Influence of dietary forage level and forage coarseness of grind on growth performance and digestive function in feedlot steers. Anim. Sci. J. 1996, 74, 2310–2316. [Google Scholar] [CrossRef] [PubMed]
- Depenbusch, B.E.; Loe, E.R.; Sindt, J.J.; Cole, N.A.; Higgins, J.J.; Drouillard, J.S. Optimizing use of distillers grains in finishing diets containing steam-flaked corn. Anim. Sci. J. 2009, 87, 2644–2652. [Google Scholar] [CrossRef] [PubMed]
- Huck, G.L.; Kreikemeier, K.K.; Kuhl, G.L.; Eck, T.P.; Bolsen, K.K. Effects of feeding combinations of steam-flaked grain sorghum and steam-flaked, high-moisture, or dry-rolled corn on growth performance and carcass characteristics in feedlot cattle. Anim. Sci. J. 1998, 76, 2984–2990. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, K.F.; Sehested, J.; Vestergaard, M. Effect of starch level and straw intake on animal performance, rumen wall characteristics and liver abscesses in intensively fed Friesian bulls. Animal 2007, 1, 797–803. [Google Scholar] [CrossRef] [PubMed]
- May, M.L.; DeClerck, J.C.; Quinn, M.J.; DiLorenzo, N.; Leibovich, J.; Smith, D.R.; Galyean, M.L. Corn or sorghum wet distillers grains with solubles in combination with steam-flaked corn: Feedlot cattle performance, carcass characteristics, and apparent total tract digestibility. Anim. Sci. J. 2010, 88, 2433–2443. [Google Scholar] [CrossRef] [PubMed]
- Mir, P.S.; Dugan, M.E.R.; He, M.L.; Entz, T.; Yip, B. Effects of dietary sunflower seeds and tylosin phosphate on production variables, carcass characteristics, fatty acid composition, and liver abscess incidence in crossbred steers. Anim. Sci. J. 2008, 86, 3125–3136. [Google Scholar] [CrossRef] [PubMed]
- Salim, H.; Wood, K.M.; McEwen, P.L.; Vandervoort, G.; Miller, S.P.; Mandell, I.B.; Swanson, K.C. Influence of feeding increasing level of dry or modified wet corn distillers grains plus solubles in whole corn grain-based finishing diets on growth performance, carcass traits, and feeding behavior in finishing cattle. Livest. Sci. 2014, 161, 53–59. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting meta-analysis in R with the metaphor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials. 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, S.G.; Altman, D.G. Measuring inconsistency in meta-analysis. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Light, R.J.; Pillemer, D.B. Summing Up: The Science of Reviewing Research; Harvard University Press: Cambridge, MA, USA, 1984; pp. 115–136. [Google Scholar]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.G.; Sharp, S.J. Explaining heterogeneity in meta-analysis: A comparison of methods. Stat. Med. 1999, 18, 2693–2708. [Google Scholar] [CrossRef]
- Viechtbauer, W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J. Educ. Behav. Stat. 2005, 30, 261–293. [Google Scholar] [CrossRef]
- Harbord, R.M.; Higgins, J.P. Meta-regression in stata. Stata J. 2008, 8, 493–519. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Li, T.; Deeks, J.J. Choosing effect measures and computing estimates of effect. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Thomas, J., Eds.; Wiley Blackwell: Cochrane, ON, Canada, 2019; pp. 143–174. [Google Scholar]
- Davis, M.S.; Koers, W.C.; Vander Pol, K.J.; Turgeon, O.A., Jr. Liver abscess score and carcass characteristics of feedlot cattle. Anim. Sci. J. 2007, 85, 126. [Google Scholar]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Lechtenberg, K.F. Liver Abscess in Feedlot callte. Vet. Clin. Food Anim. 2007, 23, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Ametaj, B.N.; Zebeli, Q. Liver abscesses in feedlot cattle: A review on etiology, prevalence, prevention, and control. J. Liver 2013, 2, 127. [Google Scholar]
- Fuerniss, L.K.; Davis, H.E.; Belk, A.D.; Metcalf, J.L.; Engle, T.E.; Scanga, J.A.; Martin, J.N. Liver abscess microbiota of feedlot steers finished in natural and traditional management programs. Anim. Sci. J. 2022, 100, skac252. [Google Scholar] [CrossRef] [PubMed]
- Plaizier, J.C.; Danscher Li, S.; Derakshani, A.M.; Andersen, H.; Khafipour, P.H. Changes in microbiota in rumen digesta and feces due to a grain-based subacute ruminal acidosis (SARA) challenge. Microb. Ecol. 2017, 74, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Pinnell, L.J.; Morley, P.S. The microbial ecology of liver abscesses in cattle. Vet. Clin. Food Anim. Pract. 2022, 38, 367–381. [Google Scholar] [CrossRef]
- Gifford, C.A.; Holland, B.P.; Mills, R.L.; Maxwell, C.L.; Farney, J.K.; Terrill, S.J.; Krehbiel, C.R. Growth and development symposium: Impacts of inflammation on cattle growth and carcass merit. Anim. Sci. J. 2012, 90, 1438–1451. [Google Scholar] [CrossRef]
- Peters, T.J. All about Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press: San Diego, CA, USA, 1995; pp. 188–249. [Google Scholar]
- Wiese, B.I.; Campbell, J.; Hendrick, S.; Penner, G.B. Ruminal pH, short-chain fatty acid concentrations, and serum acute phase protein concentrations during finishing for steers with and without rumen and liver pathology. Can. J. Anim. Sci. 2017, 97, 581–589. [Google Scholar] [CrossRef]
- Reeds, R.J.; Fjeld, C.R.; Jahoor, F. Do the differences between the amino acid compositions of acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? J. Nutr. 1994, 124, 906–910. [Google Scholar] [CrossRef]
- Eckersall, P.D.; Bell, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. J. Vet. Sci. 2010, 185, 23–27. [Google Scholar] [CrossRef]
- Macdonald, A.G.; Bourgon, S.L.; Palme, R.; Miller, S.P.; Montanholi, Y.R. Evaluation of blood metabolites reflects presence or absence of liver abscesses in beef cattle. Vet. Rec. Open 2017, 4, e000170. [Google Scholar] [CrossRef]
- Hossner, K.L. Hormones, Growth Factors and Adipose Tissue. In Hormonal Regulation of Farm Animal Growth, 1st ed.; CABI Publishing: Wallingford, UK, 2005; pp. 163–178. [Google Scholar]
N of Animals | Genetic Type | LA score (Elanco 2019 a) | LA % | Concentrate in Diet (g/kg) | Days on Feed | Variable | |
---|---|---|---|---|---|---|---|
Brink et al. [11] | -- | -- | A, A, A+, A, A, A+ | -- | -- | -- | DMI, BWf, ADG, FE, CW, DRE |
Brown and Lawrence [9] | 72,225 | -- | A, A, A+, A, A | -- | -- | -- | CW, MAR, RIB, SFT, KPH, USDA |
Calderon-Cortes and Zinn [17] | 32 | Crossbreed | -- | 12.5; 12.5 | 840; 920 | 80 | DMI, BWf, ADG, FE, CW, DRE, MAR, RIB, SFT, KPH, USDA |
Depenbusch et al. [18] | 299 | Crossbreed | -- | 2.4; 2.5; 4.8; 7.2; 2.4; 2.4 | 994; 1000; 994; 1000; 994; 994 | -- | DMI, BWf, ADG, FE, CW, DRE, MAR, RIB, SFT, KPH, USDA |
Huck et al. [19] | 306 | Crossbreed | A, A, A, A, A, A, A, A | -- | 900 | -- | DMI, BWf, ADG, FE, CW, MAR, SFT, KPH |
Jorgensen et al. [20] | 48 | Danish Friesian bull | -- | 9.09; 20.0; 22.72 | -- | 210 | DMI, BWf, ADG, CW, DRE |
May et al. [21] | 243 | Crossbreed | -- | 3.1; 9.4; 3.1; 6.3; 9.4; 3.1; 9.4; 3.1; 6.3; 9.4 | 994 | DMI, BWf, ADG, FE, CW, DRE, MAR, RIB, SFT, KPH, USDA | |
Mir et al. [22] | 48 | Crossbreed | -- | 36.0 | 860 | 157 | DMI, BWf, ADG, FE, CW, DRE, MAR, RIB, SFT |
Salim et al. [23] | 102 | Crossbreed | A | - | 900 | DMI, BWf, ADG, FE, CW, DRE, MAR, RIB, SFT |
Item 1 | No Abscesses 2 Mean (SD) | N 3 | Liver Abscess | Heterogeneity 5 | Funnel Test 6 | ||
---|---|---|---|---|---|---|---|
4 WMDRandom effect (95% CI) | p-Value | p-Value | I 2 (%) | p-Value | |||
DMI, kg/d | 9.36 (1.15) | 39 | −0.097 (−0.19, −0.01) | 0.043 | 0.060 | 27.44 | 0.567 |
BWFinal, kg | 551.73 (69.74) | 41 | −2.112 (−5.63, 1.14) | 0.240 | 0.047 | 28.62 | 0.223 |
ADG, kg/d | 1.57 (0.31) | 42 | −0.020 (0.13, −0.04) | 0.131 | 0.033 | 30.71 | 0.132 |
FE, kg/kg | 0.165 (0.018) | 35 | −0.003 (−0.01, −0.01) | 0.031 | 0.058 | 28.91 | 0.260 |
Carcass weight, kg | 341.80 (47.23) | 47 | −1.789 (−4.12, 0.54) | 0.133 | 0.001 | 48.81 | 0.115 |
Carcass dressing, % | 60.95 (2.75) | 33 | 0.095 (−0.11, 0.29) | 0.347 | 0.033 | 33.50 | 0.088 |
SFT, mm | 11.09 (1.82) | 36 | −0.103 (−0.37, 0.17) | 0.456 | 0.514 | 0.00 | 0.181 |
Ribeye area, cm2 | 83.76 (6.91) | 30 | −1.018 (−1.64, −0.38) | 0.002 | 0.676 | 0.00 | 0.432 |
KPH, % | 2.37 (0.28) | 29 | −0.007 (−0.03, 0.02) | 0.655 | 0.729 | 0.00 | 0.736 |
USDA YG (SMD) 7 | -- | 21 | −0.004 (−0.02, 0.01) | 0.722 | 0.729 | 0.00 | 0.449 |
Dependent Variable | Meta-Regression Parameters (p-Value) | Adjusted R2 (%) 2 | N3 | |||
---|---|---|---|---|---|---|
Intercept | LA Score 1 | LA % | Concentrate in Diet (g/kg of DM) | |||
BWFinal, kg | 48.4 (0.01) | −42.7 (0.01) | −34.5 (0.06) | −12.3 (0.02) | 29.51 | 41 |
ADG, kg/d | 0.44 (0.01) | −0.39 (0.01) | −0.27 (0.05) | −0.14 (0.01) | 100 | 42 |
FE, kg/kg | −0.01 (0.68) | 0.01 (0.12) | −0.01 (0.88) | −0.01 (0.01) | 57.77 | 35 |
Carcass weight, kg | 25.1 (0.03) | −26.9 (0.02) | −20.4 (0.09) | −3.10 (0.28) | 25.88 | 47 |
Carcass dressing, % | −3.65 (0.05) | 3.35 (0.08) | 3.93 (0.04) | 0.05 (0.87) | 51.73 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, R.d.N.S.; da Silva, D.A.V.; Chardulo, L.A.L.; Baldassini, W.A.; de Almeida, R.A.T.; Almeida, M.T.C.; Curi, R.A.; Pereira, G.L.; Schoonmaker, J.P.; Machado Neto, O.R. The Impact of Liver Abscesses on Performance and Carcass Traits in Beef Cattle: A Meta-Analysis Study. Ruminants 2024, 4, 79-89. https://doi.org/10.3390/ruminants4010005
Torres RdNS, da Silva DAV, Chardulo LAL, Baldassini WA, de Almeida RAT, Almeida MTC, Curi RA, Pereira GL, Schoonmaker JP, Machado Neto OR. The Impact of Liver Abscesses on Performance and Carcass Traits in Beef Cattle: A Meta-Analysis Study. Ruminants. 2024; 4(1):79-89. https://doi.org/10.3390/ruminants4010005
Chicago/Turabian StyleTorres, Rodrigo de Nazaré Santos, David Attuy Vey da Silva, Luis Arthur Loyola Chardulo, Welder Angelo Baldassini, Rafael Assis Torres de Almeida, Marco Tulio Costa Almeida, Rogério Abdallah Curi, Guilherme Luis Pereira, Jon Patrick Schoonmaker, and Otavio Rodrigues Machado Neto. 2024. "The Impact of Liver Abscesses on Performance and Carcass Traits in Beef Cattle: A Meta-Analysis Study" Ruminants 4, no. 1: 79-89. https://doi.org/10.3390/ruminants4010005
APA StyleTorres, R. d. N. S., da Silva, D. A. V., Chardulo, L. A. L., Baldassini, W. A., de Almeida, R. A. T., Almeida, M. T. C., Curi, R. A., Pereira, G. L., Schoonmaker, J. P., & Machado Neto, O. R. (2024). The Impact of Liver Abscesses on Performance and Carcass Traits in Beef Cattle: A Meta-Analysis Study. Ruminants, 4(1), 79-89. https://doi.org/10.3390/ruminants4010005