Effect of Iodoform in Maize and Clover Grass Silages: An In Vitro Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrate Information
2.2. Experimental Design and In Vitro Procedure
2.2.1. Sample Preparation
2.2.2. Buffer Preparation
2.2.3. Rumen Fluid Preparation
2.2.4. In Vitro Preparation
2.3. Post-Fermentation Sample Collection and Analyses
2.4. Calculations
2.5. Statistical Analyses
3. Results
3.1. Substrate Differences
3.2. Differences between Substrate with and without Iodoform IZ
4. Discussion
4.1. Differences between Substrates
4.2. The Effect of the Additive in the Substrates on All the Evaluated Traits
4.2.1. Addition of IZ in GS
4.2.2. Addition of IZ in MS
4.3. Differential Effect of IZ on Substrates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Methane Emissions in Livestock and Rice Systems—Sources, Quantification, Mitigations and Metrics; FAO: Rome, Italy, 2023; pp. 81–84, 160. [Google Scholar] [CrossRef]
- Tseten, T.; Sanjorjo, R.A.; Kwon, M.; Kim, S.W. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J. Microbiol. Biotechnol. 2022, 32, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Thorsteinsson, M.; Lund, P.; Weisbjerg, M.R.; Noel, S.J.; Schönherz, A.A.; Hellwing, A.L.F.; Hansen, H.H.; Nielsen, M.O. Enteric Methane Emission of Dairy Cows Supplemented with Iodoform in a Dose–Response Study. Sci. Rep. 2023, 13, 12797. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.L.; Dijkstra, J.; Kebreab, E.; Bannink, A.; Odongo, N.E.; McBride, B.W.; France, J. Aspects of Rumen Microbiology Central to Mechanistic Modelling of Methane Production in Cattle. J. Agric. Sci. 2008, 146, 213–233. [Google Scholar] [CrossRef]
- McAllister, T.A.; Newbold, C.J. Redirecting Rumen Fermentation to Reduce Methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7–13. [Google Scholar] [CrossRef]
- Sun, K.; Liu, H.; Fan, H.; Liu, T.; Zheng, C. Research Progress on the Application of Feed Additives in Ruminal Methane Emission Reduction: A Review. PeerJ 2021, 9, e11151. [Google Scholar] [CrossRef]
- Glasson, C.R.K.; Kinley, R.D.; de Nys, R.; King, N.; Adams, S.L.; Packer, M.A.; Svenson, J.; Eason, C.T.; Magnusson, M. Benefits and Risks of Including the Bromoform Containing Seaweed Asparagopsis in Feed for the Reduction of Methane Production from Ruminants. Algal. Res. 2022, 64, 102673. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen Methanogens and Mitigation of Methane Emission by Anti-Methanogenic Compounds and Substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Lanigan, G. Metabolism of Pyrrolizidine Alkaloids in the Ovine Rumen. IV. Effects of Chloral Hydrate and Halogenated Methanes on Rumen Methanogenesis and Alkaloid Metabolism in Fistulated Sheep. Aust. J. Agric. Res. 1972, 23, 1085–1901. [Google Scholar] [CrossRef]
- Pease, R.N.; Chesebro, P.R. Equilibrium in the reaction CH4 + 2H2O ⇄ CO2 + 4H2. J. Am. Chem. Soc. 1928, 50, 1464–1469. [Google Scholar] [CrossRef]
- Dhakal, R.; Copani, G.; Cappellozza, B.I.; Milora, N.; Hansen, H.H. The Effect of Direct-Fed Microbials on In-Vitro Rumen Fermentation of Grass or Maize Silage. Fermentation 2023, 9, 347. [Google Scholar] [CrossRef]
- Khan, N.A.; Yu, P.; Ali, M.; Cone, J.W.; Hendriks, W.H. Nutritive Value of Maize Silage in Relation to Dairy Cow Performance and Milk Quality. J. Sci. Food Agric. 2015, 95, 238–252. [Google Scholar] [CrossRef]
- Hart, K.J.; Huntington, J.A.; Wilkinson, R.G.; Bartram, C.G.; Sinclair, L.A. The Influence of Grass Silage-to-Maize Silage Ratio and Concentrate Composition on Methane Emissions, Performance and Milk Composition of Dairy Cows. Animal 2015, 9, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Ankom Technology. Acid Detergent Fiber in Feeds-Filter Bag Technique (for A200 and A200I). Available online: https://www.ankom.com/sites/default/files/document-files/Method_5_ADF_A200.pdf (accessed on 7 August 2023).
- Ankom Technology. Neutral Detergent Fiber in Feeds-Filter Bag Technique (for A200 and A200I). Available online: https://www.ankom.com/sites/default/files/document-files/Method_6_NDF_A200.pdf (accessed on 7 August 2023).
- Ankom Technology. Determining Acid Detergent Lignin in Beakers. Available online: https://www.ankom.com/sites/default/files/document-files/Method_8_Lignin_in_beakers.pdf (accessed on 7 August 2023).
- Menke, K.H.; Steingass, H. Estimation of the Energetic Feed Value Obtained from Chemical Analysis and In Vitro Gas Production Using Rumen Liquid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Jantzen, B.; Hansen, H.H. Differences in Donor Animal Production Stage Affect Repeatability of In Vitro Rumen Fermentation Kinetics. Animals 2023, 13, 2993. [Google Scholar] [CrossRef] [PubMed]
- Prathap, P.; Chauhan, S.S.; Leury, B.J.; Cottrell, J.J.; Joy, A.; Zhang, M.; Dunshea, F.R. Effects of Feeding a Commercial Starch Binding Agent during Heat Stress on Enteric Methane Emission, Rumen Volatile Fatty Acid Contents, and Diet Digestibility of Merino Lambs. Atmosphere 2023, 14, 605. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In Vitro Gas Production: A Technique Revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Scheipl, F.; Greven, S.; Kuechenhoff, H. Size and Power of Tests for a Zero Random Effect Variance or Polynomial Regression in Additive and Linear Mixed Models. Comput. Stat. Data Anal. 2008, 52, 3283–3299. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.8.5. 2023. Available online: https://CRAN.R-Project.Org/Package=emmeans (accessed on 31 January 2022).
- Rinne, M.; Huhtanen, P.; Jaakkola, S. Grass Maturity Effects on Cattle Fed Silage-Based Diets. 2. Cell Wall Digestibility, Digestion and Passage Kinetics. Anim. Feed Sci. Technol. 1997, 67, 19–35. [Google Scholar] [CrossRef]
- Møller, J.; Thøgersen, R.; Kjeldsen, A.M.; Weisbjerg, M.R.; Søegaard, K.; Hvelplund, T.; Børsting, C.F. Feedstuff Table. In Composition and Feeding Value of Feedstuffs for Cattle; Report no. 91; The Danish Agricultural Advisory Centre: Copenhagen, Denmark, 2000; pp. 1–57. [Google Scholar]
- Cattani, M.; Maccarana, L.; Hansen, H.H.; Bailoni, L. Relationships among Gas Production, End Products of Rumen Fermentation and Microbial N Produced in Vitro at Two Incubation Times. Agric. Conspec. Sci. 2013, 78, 217–220. [Google Scholar]
- Pecka-Kiełb, E.; Miśta, D.; Króliczewska, B.; Zachwieja, A.; Słupczyńska, M.; Król, B.; Sowiński, J. Changes in the In Vitro Ruminal Fermentation of Diets for Dairy Cows Based on Selected Sorghum Cultivars Compared to Maize, Rye and Grass Silage. Agriculture 2021, 11, 492. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Guo, G.; Huo, W.J.; Zhang, S.L.; Pei, C.X.; Zhang, Y.L.; Wang, H. Effects of Branched-Chain Volatile Fatty Acids on Lactation Performance and MRNA Expression of Genes Related to Fatty Acid Synthesis in Mammary Gland of Dairy Cows. Animal 2018, 12, 2071–2079. [Google Scholar] [CrossRef]
- Dijkstra, J. Production and Absorption of Volatile Fatty Acids in the Rumen. Livest. Prod. Sci. 1994, 39, 61–69. [Google Scholar] [CrossRef]
- Hurst, C.J. Microbial Fermentations in Nature and as Designed Processes; Hurst, C.J., Ed.; John, Wiley & Sons: Hoboken, NJ, USA, 2023; ISBN 9781119849971. [Google Scholar]
- Cone, J.W.; Van Gelder, A.H. Influence of Protein Fermentation on Gas Production Profiles. Anim. Feed Sci. Technol. 1999, 76, 251–264. [Google Scholar] [CrossRef]
- Khan, N.A.; Sulaiman, S.M.; Hashmi, M.S.; Rahman, S.U.; Cone, J.W. Chemical Composition, Ruminal Degradation Kinetics, and Methane Production (In Vitro) of Winter Grass Species. J. Sci. Food Agric. 2021, 101, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Beever, D.E. Rumen Function. In Quantitative Aspects of Ruminant Digestion and Metabolism; CABI: Wallingford, UK, 1993; pp. 187–215. [Google Scholar]
- Jackson, W.; Krishnamoorthy, U.; Robinson, P.H.; Fadel, J.G. Effect of Changing Partitioning Factor (PF) and In Vitro Rate of Gas Production (k) of Diets on Intake and Digestibility, Microbial N Production, as Well as Milk Production and Composition, of Lactating Crossbred Dairy Cows. Anim. Feed Sci. Technol. 2010, 160, 128–136. [Google Scholar] [CrossRef]
- Tian, X.; Qin, J.; Luo, Q.; Xu, Y.; Xie, S.; Chen, R.; Wang, X.; Lu, Q. Differences in Chemical Composition, Polyphenol Compounds, Antioxidant Activity, and In Vitro Rumen Fermentation among Sorghum Stalks. Animals 2024, 14, 415. [Google Scholar] [CrossRef]
- Guyader, J.; Ungerfeld, E.M.; Beauchemin, K.A. Redirection of Metabolic Hydrogen by Inhibiting Methanogenesis in the Rumen Simulation Technique (RUSITEC). Front. Microbiol. 2017, 8, 393. [Google Scholar] [CrossRef]
Item 1 | Clover Grass Silage (GS) | Maize Silage (MS) |
---|---|---|
Organic matter, % (DM) | 92.9 | 96.8 |
CP, % | 18.2 | 8.8 |
aNDFom, % | 47.7 | 42.0 |
ADFom, % | 26.8 | 22.8 |
ADL(SA), % | 2.4 | 1.7 |
Ash, % (DM) | 7.1 | 3.2 |
NSCs, % | 27.0 | 46.0 |
Cellulose, % | 24.4 | 21.1 |
Hemicellulose, % | 20.9 | 19.2 |
Treatments 2 | Substrate × Additive | Contrasts 3 | ||||||
---|---|---|---|---|---|---|---|---|
Traits 1 | GS | MS | GS + IZ | MS + IZ | p-Value | GS vs. MS | GS vs. GS + IZ | MS vs. MS + IZ |
dOM, g/g | 0.58 | 0.55 | 0.45 | 0.53 | 0.014 4 | 0.273 | <0.001 | 0.487 |
Volatile fatty acids (VFAs), mMol/L | ||||||||
Acetate | 37.8 | 37.1 | 38.8 | 37.6 | 0.734 | 0.538 | 0.339 | 0.629 |
Propionate | 11.5 | 11.8 | 12.0 | 12.0 | 0.398 | 0.195 | 0.018 | 0.202 |
iso-butyric acid | 0.54 | 0.63 | 0.66 | 0.55 | 0.034 | 0.138 | 0.070 | 0.209 |
n-butyric acid | 6.57 | 7.50 | 7.20 | 7.45 | 0.049 | <0.001 | 0.012 | 0.821 |
iso-valeric acid | 0.93 | 1.14 | 1.09 | 1.06 | 0.012 | 0.003 | 0.016 | 0.229 |
n-valeric acid | 0.98 | 1.04 | 1.10 | 1.01 | 0.014 | 0.142 | 0.007 | 0.435 |
Caproic acid | 0.40 | 0.53 | 0.47 | 0.46 | 0.026 | 0.004 | 0.097 | 0.115 |
Total VFA | 58.7 | 59.7 | 61.3 | 60.2 | 0.157 | 0.340 | 0.019 | 0.660 |
(A + B)/P | 3.88 | 3.81 | 3.84 | 3.77 | 0.986 | 0.554 | 0.730 | 0.749 |
PF, mg/mL | 3.93 | 3.70 | 3.20 | 3.31 | 0.223 | 0.227 | <0.001 | 0.044 |
Cumulative total gas production (TGP), mL/g OM | ||||||||
TGP, 6 h | 59.6 | 65.2 | 58.0 | 72.8 | 0.047 | 0.086 | 0.611 | 0.023 |
TGP, 12 h | 100 | 104 | 98 | 112 | 0.034 | 0.292 | 0.495 | 0.021 |
TGP, 18 h | 129 | 130 | 126 | 139 | 0.036 | 0.696 | 0.544 | 0.019 |
TGP, 22 h | 144 | 144 | 142 | 155 | 0.029 | 0.935 | 0.568 | 0.013 |
Treatments 1 | Substrate × Additive | Contrasts 2 | ||||||
---|---|---|---|---|---|---|---|---|
Traits | GS | MS | GS + IZ | MS + IZ | p-Value | GS vs. MS | GS vs. GS + IZ | MS vs. MS + IZ |
Methane yield, mL/g OM 3 | ||||||||
1 h | 0.04 | 0.03 | 0.02 | 0.03 | 0.313 | 0.287 | 0.068 | 0.686 |
2 h | 0.16 | 0.19 | 0.11 | 0.21 | 0.461 | 0.609 | 0.449 | 0.771 |
3 h | 0.37 | 0.70 | 0.31 | 0.75 | 0.508 | 0.011 4 | 0.622 | 0.656 |
4 h | 0.58 | 0.94 | 0.51 | 1.07 | 0.180 | 0.002 | 0.490 | 0.228 |
5 h | 0.66 | 1.00 | 0.57 | 1.21 | 0.027 | 0.001 | 0.338 | 0.030 |
6 h | 0.75 | 0.99 | 0.68 | 1.17 | 0.044 | 0.008 | 0.404 | 0.043 |
7 h | 0.76 | 1.00 | 0.70 | 1.03 | 0.557 | 0.010 | 0.562 | 0.799 |
8 h | 0.80 | 0.88 | 0.75 | 1.02 | 0.098 | 0.359 | 0.552 | 0.082 |
9 h | 0.79 | 0.88 | 0.72 | 0.85 | 0.744 | 0.229 | 0.394 | 0.703 |
Hydrogen yield, mL/g OM 5 | ||||||||
1 h | 0.015 | 0.006 | 0.014 | 0.005 | 0.918 | 0.002 | 0.726 | 0.625 |
2 h | 0.018 | 0.014 | 0.026 | 0.017 | 0.420 | 0.193 | 0.044 | 0.377 |
3 h | 0.012 | 0.022 | 0.020 | 0.024 | 0.275 | 0.007 | 0.037 | 0.576 |
4 h | 0.011 | 0.024 | 0.015 | 0.028 | 0.960 | <0.001 | 0.243 | 0.280 |
5 h | 0.010 | 0.023 | 0.014 | 0.027 | 0.888 | <0.001 | 0.165 | 0.241 |
6 h | 0.011 | 0.021 | 0.013 | 0.025 | 0.826 | <0.001 | 0.331 | 0.208 |
7 h | 0.009 | 0.019 | 0.014 | 0.020 | 0.348 | 0.002 | 0.133 | 0.864 |
8 h | 0.012 | 0.016 | 0.013 | 0.018 | 0.898 | 0.051 | 0.507 | 0.406 |
9 h | 0.010 | 0.016 | 0.013 | 0.015 | 0.300 | 0.042 | 0.282 | 0.691 |
10 h | 0.009 | 0.014 | 0.011 | 0.014 | 0.676 | 0.127 | 0.516 | 0.957 |
11 h | 0.009 | 0.015 | 0.012 | 0.010 | 0.081 | 0.048 | 0.362 | 0.118 |
12 h | 0.008 | 0.025 | 0.019 | 0.008 | 0.075 | 0.128 | 0.299 | 0.136 |
13 h | 0.007 | 0.012 | 0.019 | 0.017 | 0.588 | 0.600 | 0.225 | 0.660 |
14 h | 0.021 | 0.012 | 0.008 | 0.035 | 0.256 | 0.694 | 0.572 | 0.297 |
15 h | 0.028 | 0.018 | 0.004 | 0.030 | 0.180 | 0.612 | 0.211 | 0.513 |
16 h | 0.007 | 0.087 | 0.003 | 0.018 | 0.076 | 0.003 | 0.874 | 0.009 |
Cumulative total yield, mL/g OM | ||||||||
Methane | 9.79 | 11.4 | 9.23 | 11.8 | 0.375 | 0.070 | 0.496 | 0.564 |
Hydrogen | 0.356 | 0.594 | 0.258 | 0.508 | 0.950 | 0.085 | 0.464 | 0.527 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massaro, S.; Jantzen, B.; Axel, A.M.D.; Tagliapietra, F.; Hansen, H.H. Effect of Iodoform in Maize and Clover Grass Silages: An In Vitro Study. Ruminants 2024, 4, 418-432. https://doi.org/10.3390/ruminants4030030
Massaro S, Jantzen B, Axel AMD, Tagliapietra F, Hansen HH. Effect of Iodoform in Maize and Clover Grass Silages: An In Vitro Study. Ruminants. 2024; 4(3):418-432. https://doi.org/10.3390/ruminants4030030
Chicago/Turabian StyleMassaro, Selene, Britt Jantzen, Anne Marie Dixen Axel, Franco Tagliapietra, and Hanne Helene Hansen. 2024. "Effect of Iodoform in Maize and Clover Grass Silages: An In Vitro Study" Ruminants 4, no. 3: 418-432. https://doi.org/10.3390/ruminants4030030
APA StyleMassaro, S., Jantzen, B., Axel, A. M. D., Tagliapietra, F., & Hansen, H. H. (2024). Effect of Iodoform in Maize and Clover Grass Silages: An In Vitro Study. Ruminants, 4(3), 418-432. https://doi.org/10.3390/ruminants4030030