Rumen Degradation of Endosperm and Mesocarp Expellers from Acrocomia aculeata (Jacq.) Lodd. ex Mart. in Sheep Grazing Either Natural Pastures or Brachiaria brizantha cv. Marandu
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Rumen Degradation of Pastures and Expellers
2.3. Rumen Fermentation
2.4. Statistical Analysis
3. Results
3.1. Rumen Degradability of Pastures
3.2. Rumen Degradability of Expellers
3.3. Animal Performance
3.4. Rumen Fermentation
4. Discussion
4.1. Rumen Degradability
4.2. Effects of Grazed Pasture and Supplementation on Animal Performance
4.3. Effects of Grazed Pasture and Supplementation on Rumen Environment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borges, C.E.; dos Santos, J.C.B.; Evaristo, A.B.; da Cunha, T.G.; Veloso, R.V.d.S.; Barroso, G.M.; Souza, P.G.C.; da Silva, R.S. Distribution and future projection of potential cultivation areas for Acrocomia aculeata (Arecaceae) worldwide: The emerging energy culture of the tropics. Theor. Appl. Climatol. 2021, 146, 1069–1078. [Google Scholar] [CrossRef]
- Evaristo, A.B.; Grossi, J.A.S.; Carneiro, A.D.C.O.; Pimentel, L.D.; Motoike, S.Y.; Kuki, K.N. Actual and putative potentials of macaúba palm as feedstock for solid biofuel production from residues. Biomass Bioenerg. 2016, 85, 18–24. [Google Scholar] [CrossRef]
- Costa, G.L.A.; Buccini, D.F.; Arruda, A.L.A.; Favaro, S.P.; Moreno, S.E. Phytochemical profile, anti-inflammatory, antimutagenic and antioxidant properties of Acrocomia aculeata (Jacq.) Lodd. pulp oil. Food Sci. Technol. 2020, 40, 1–9. [Google Scholar] [CrossRef]
- Rencoret, J.; Kim, H.; Evaristo, A.B.; Gutiérrez, A.; Ralph, J.; Del Río, J.C. Variability in lignin composition and structure in cell walls of different parts of Macaúba (Acrocomia aculeata) palm fruit. J. Agric. Food Chem. 2018, 66, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.V.; Sanjinez-Argandoña, E.J.; Linzmeier, A.M.; Cardoso, C.A.L.; Macedo, M.L.R. Food value of mealworm grown on Acrocomia aculeata pulp flour. PLoS ONE 2016, 11, e0151275. [Google Scholar] [CrossRef]
- Azevedo, R.A.D.; Rufino, L.M.D.A.; Santos, A.C.R.D.; Silva, L.P.D.; Bonfá, H.C.; Duarte, E.R.; Geraseev, L.C. Desempenho de cordeiros alimentados com inclusão de torta de macaúba na dieta. Pesqui. Agropecu. Bras. 2012, 47, 1663–1668. [Google Scholar] [CrossRef]
- Calvani, C.C.; Goncalves, A.M.B.; Silva, M.J.; Oliveira, S.L.; Marangoni, B.S.; Reis, D.D.D.; Cena, C. Portland cement/Acrocomia aculeata endocarp bricks: Thermal insulation and mechanical properties. Materials 2020, 13, 2081. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.A.D.; Rufino, L.M.D.A.; Santos, A.C.R.D.; Júnior, C.S.R.; Rodriguez, N.M.; Geraseev, L.C. Comportamento ingestivo de cordeiros alimentados com torta de macaúba. Arqu. Bras. Med. Vet. Zootec. 2013, 65, 490–496. [Google Scholar] [CrossRef]
- Azevedo, R.A.D.; Santos, A.C.R.D.; Júnior, C.S.R.; Bicalho, F.L.; Bahiense, R.N.; Araújo, L.; Geraseev, L.C. Comportamento ingestivo de vacas alimentadas com torta de macaúba. Ciência Rural 2013, 43, 1485–1488. [Google Scholar] [CrossRef]
- Poetsch, J.; Haupenthal, D.; Lewandowski, I.; Oberlander, D.; Hilger, T. Acrocomia aculeata—A Sustainable Oil Crop. Rural 21 2012, 46, 41–44. Available online: https://www.rural21.com/fileadmin/downloads/2012/en-3/rural2012_03-S41-44.pdf (accessed on 10 August 2024).
- Loup, C. Procesamiento industrial del Mbokajá. ABC Color 6 February 2008. Available online: https://www.abc.com.py/edicion-impresa/suplementos/abc-rural/procesamiento-industrial-del-mbokaja-1042583.html (accessed on 12 August 2024).
- Carrera, R.A.B.; Veloso, C.M.; Knupp, L.S.; Souza Júnior, A.H.d.; Detmann, E.; Lana, R.d.P. Protein co-products and by-products of the biodiesel industry for ruminants feeding. Rev. Bras. Zootec. 2012, 41, 1202–1211. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. Estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Niderkorn, V.; Baumont, R. Associative effects between forages on feed intake and digestion in ruminants. Animal 2009, 3, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Arias, R.; Ocampos, D. Efecto de la suplementación en el desempeño productivo de corderos destetados mantenidos sobre pradera natural. Investig. Agrar. 2002, 4, 10–14. [Google Scholar] [CrossRef]
- Carvalho, D.M.G.; Cabral, L.S.; Zervoudakis, J.T.; Arnoldo, T.L.Q.; Benatti, J.M.B.; Koscheck, J.F.W.; Piona, M.N.M.; Oliveira, A.A. Suplementos para ovinos mantidos em pastos de capim-marandu. Pesqui. Agropecu. Bras. 2011, 46, 196–204. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Robertson, J.B.; Van Soest, P.J. The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fibre in Food; James, W.P., Theander, O., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 23–158. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Mertens, D.R. Using neutral detergent fiber to formulate dairy rations and estimate the net energy content of feeds. In Proceedings of the Cornell Nutrition Conference, Ithaca; Departments of Animal Science and Poultry and Avian Species of the New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, New York and in cooperation with the American Feed Manufacturers’ Association: Ithaca, NY, USA, 1983; pp. 60–68. [Google Scholar]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Gimeno, A.; Al Alami, A.; Abecia, L.; de Vega, A.; Fondevila, M.; Castrillo, C. Effect of type (barley vs. maize) and processing (grinding vs. dry rolling) of cereal on ruminal fermentation and microbiota of beef calves during the early fattening period. Anim. Feed Sci. Technol. 2015, 199, 113–126. [Google Scholar] [CrossRef]
- Mathis, C.P.; Sawyer, J.E. Nutritional management of grazing beef cows. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 2018. [Google Scholar]
- Lopes, F.C.F.; Paciullo, D.S.C.; Mota, E.F.; Pereira, J.C.; Azambuja, A.A.; Motta, A.C.S.; Rodrigues, G.S.; Duque, A.C.A. Composição química e digestibilidade ruminal in situ da forragem de quatro espécies do gênero Brachiaria. Arqu. Bras. Med. Vet. Zoo. 2010, 62, 883–888. [Google Scholar] [CrossRef]
- Oliveira, L.O.F.D.; Saliba, E.D.O.S.; Goncalves, L.C.; Borges, I.; Miranda, P.D.A.B.; Fialho, M.P.F. In situ digestibility and ruminal kinetics of steers receiving protein supplementation on pasture. Rev. Bras. Zootec. 2010, 39, 1328–1335. [Google Scholar] [CrossRef]
- Ibrahim, M.N.M.; Tamminga, S.; Zemmelink, G. Degradation of tropical roughages and concentrate feeds in the rumen. Anim. Feed Sci. Technol. 1995, 54, 81–92. [Google Scholar] [CrossRef]
- Oliveira, D.M.; Clemente, E.; da Costa, J.M.C. Bioactive compounds and physicochemical parameters of grugru palm (Acrocomia aculeata) from Brazil: Pulp and powder. Food Sci. Technol. Res. 2014, 20, 7–12. [Google Scholar] [CrossRef]
- Sauvant, D.; Perez, J.M.; Tran, G. Tablas de Composición y Valor Nutritivo de las Materias Primas Destinadas a los Alimentos de Interés Ganadero: Cerdos, Aves, Bovinos, Ovinos, Caprinos, Conejos, Caballos, Peces; Mundi-Prensa: Madrid, Spain, 2004. [Google Scholar]
- AFRC. An Advisory Manual Prepared by the AFRC Technical Committee on Responses to Nutrients. In Energy and Protein Requirements of Ruminants; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Allphin, R.A.; Lambert, B.D.; Whitney, T.R.; Muir, J.P. Ruminal In Situ Nutrient Disappearance from Alfalfa and Cottonseed Hulls in Goats Fed Dried Distillers Grains. Livest. Res. Rural. Dev. 2012, 24, 179. Available online: http://www.lrrd.org/lrrd24/10/allp24179.htm (accessed on 10 July 2024).
- Iommelli, P.; Zicarelli, F.; Musco, N.; Sarubbi, F.; Grossi, M.; Lotito, D.; Lombardi, P.; Infascelli, F.; Tudisco, R. Effect of cereals and legumes processing on in situ rumen protein degradability: A review. Fermentation 2022, 8, 363. [Google Scholar] [CrossRef]
- Dantas, A.F.; Pereira Filho, J.M.; Silva, A.M.A.; dos Santos, E.M.; de Sousa, B.B.; Cézar, M.F. Características da Carcaça de Ovinos Santa Inês Terminados em Pastejo e Submetidos a Diferentes Níveis de Suplementação. Ciênc. Agrotec. Lavras 2008, 32, 1280–1286. Available online: https://www.scielo.br/j/cagro/a/3nSwvLWvZrzHzZHQx9rSfmx/?format=pdf&lang=pt (accessed on 6 July 2024). [CrossRef]
- Oliveira, P.T.L.; Turco, S.H.N.; Voltolini, T.V.; Araújo, G.G.L.; Pereira, L.G.R.; Mistura, C.; Menezes, D.R. Respostas fisiológicas e desempenho produtivo de ovinos em pasto suplementados com diferentes fontes proteicas. Rev. Ceres 2011, 58, 185–192. [Google Scholar] [CrossRef]
- Voltolini, T.V.; Moraes, S.A.; Araújo, G.G.L.; Pereira, L.G.R. Concentrate levels for lambs grazing on buffel grass. Rev. Ciênc. Agron. 2011, 42, 216–222. [Google Scholar] [CrossRef]
- Almeida, P.J.P.; Pereira, M.L.A.; da Silva, F.F.; dos Santos, A.B.; Pereira, T.C.J.; dos Santos, E.J.; Moreira, J.V. Santa Inês sheep supplementation on urochloa grass pasture during the dry season: Intake, nutrient digestibility and performance. Rev. Bras. Zootec. 2012, 41, 668–674. [Google Scholar] [CrossRef]
- Neres, M.A.; Monteiro, A.L.; García, C.A.; Costa, C.; Arrigoni, M.; Rosa, G.J. Forma fisica da ração e pesos de abate nas características de carcaça de cordeiros em creep feeding. Rev. Bras. Zootec. 2001, 30, 948–954. [Google Scholar] [CrossRef]
- Muinga, R.W.; Topps, J.H.; Rooke, J.A.; Thorpe, W. The effect of supplementation with Leucaena leucocephala and maize bran on voluntary food-intake, digestibility, live weight and milk-yield of Bos indicus x Bos taurus dairy-cows and rumen fermentation in steers offered Pennisetum purpureum ad libitum in the semi-humid tropics. Anim. Sci. 1995, 60, 13–23. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.L.; Adesogan, A.T.; Carter, J.N.; Blount, A.R.; Myer, R.O.; Phatak, S.C. Intake, digestibility, and nitrogen retention by sheep supplemented with warm-season legume hays or soybean meal. J. Anim. Sci. 2009, 87, 2891–2898. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.A.S.; Berchielli, T.T.; Queiroz, M.F.S.; Keli, A.; Reis, R.A.; Souza, S.F. Influência da frequência de suplementação no consumo, na digestibilidade e na fermentação ruminal em novilhos de corte mantidos em pastagem de capim-marandu. Rev. Bras. Zootec. 2009, 38, 1824–1834. [Google Scholar] [CrossRef]
- Manella, M.Q.; Lourenço, A.J.; Leme, P.R. Recria de bovinos Nelore em pastos de Brachiaria brizantha com suplementação protéica ou com acesso a banco de proteína de Leucaena lecocephala: Características de fermentação ruminal. Rev. Bras. Zootec. 2003, 32, 1002–1012. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef]
NMS | CMS | ME | ENE | Supplement | |
---|---|---|---|---|---|
Dry matter (g/kg) | n.d. | n.d. | 914 | 940 | 925 |
OM | 843 ± 17.3 | 834 ± 20.0 | 840 | 852 | 826 |
CP | 51 ± 7.7 | 47 ± 7.9 | 83 | 344 | 226 |
NDF | 711 ± 22.1 | 652 ± 24.1 | 586 | 305 | 422 |
NDIN | n.d. | n.d. | 61 | 333 | 144 |
ADF | 372 ± 17.0 | 304 ± 10.4 | 335 | 260 | 252 |
ADIN | 26 ± 3.5 | 20 ± 4.8 | 26 | 93 | 66 |
ADL | 55 ± 3.0 | 31 ± 4.5 | 153 | 103 | 105 |
EE | 30 ± 5.6 | 31 ± 4.5 | 175 | 150 | 166 |
ME (Mjul/kg dry matter) | 7.99 | 9.62 | 8.87 | 10.68. | 10.87 |
Pasture (P) | NMS | CMS | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Supplementation (S) | NS | S | NS | S | SEM | p | S | p × S | |
DM | a + b | 44.6 bA | 39.9 aA | 68.7 B | 70.7 B | 1.11 | <0.0001 | 0.13 | 0.003 |
c | 0.034 | 0.026 | 0.041 | 0.038 | 0.0019 | <0.0001 | 0.003 | 0.064 | |
CP | a + b | 32.7 | 37.1 | 54.8 | 62.3 | 4.60 | <0.0001 | 0.10 | 0.65 |
c | 0.070 aA | 0.168 bB | 0.102 B | 0.115 A | 0.0133 | 0.32 | 0.0004 | 0.002 | |
NDF | a + b | 42.9 bA | 33.9 aA | 63.8 aB | 68.1 bB | 1.43 | <0.0001 | 0.049 | 0.0002 |
c | 0.026 | 0.024 | 0.041 | 0.038 | 0.0013 | <0.0001 | 0.017 | 0.60 |
Pasture (P) | NMS | CMS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Supplementation (S) | NS | S | NS | S | p-Value | |||||||||
Expeller (E) | ME | ENE | ME | ENE | ME | ENE | ME | ENE | RSD1 | RSD2 | p | S | E | |
DM | a + b | 81.0 | 81.5 | 79.2 | 69.7 | 78.9 | 82.9 | 80.6 | 82.1 | 2.94 | 7.32 | 0.20 | 0.21 | 0.72 |
c | 0.072 | 0.054 | 0.130 | 0.043 | 0.150 | 0.035 | 0.165 | 0.045 | 0.0049 | 0.0696 | 0.33 | 0.46 | 0.007 | |
CP | a + b | 83.9 | 87.7 | 81.3 | 63.3 | 76.4 | 84.7 | 79.6 | 89.1 | 9.45 | 15.76 | 0.39 | 0.21 | 0.82 |
c | 0.037 | 0.044 | 0.044 | 0.027 | 0.131 | 0.033 | 0.269 | 0.032 | 0.1291 | 0.1373 | 0.10 | 0.50 | 0.073 | |
NDF | a + b | 59.2 | 75.3 | 51.5 | 65.2 | 51.0 | 75.8 | 55.0 | 73.7 | 3.87 | 6.83 | 0.63 | 0.11 | <0.0001 |
c | 0.049 | 0.079 | 0.117 | 0.059 | 0.123 | 0.055 | 0.081 | 0.068 | 0.0622 | 0.0552 | 0.77 | 0.81 | 0.20 |
Pasture (P) | NMS | CMS | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Supplementation (S) | NS | S | NS | S | p | S | p × S | |
FLW (kg) | 37.5 a | 41.7 b | 39.0 | 39.8 | 0.69 | 0.54 | 0.005 | 0.033 |
ADG (g/d) | 17 | 104 | 58 | 81 | 15.5 | 0.75 | 0.007 | 0.066 |
Pasture (P) | NMS | CMS | p-value | |||||
---|---|---|---|---|---|---|---|---|
Supplementation (S) | NS | S | NS | S | SEM | p | S | p × S |
pH | 6.51 | 6.41 | 6.38 | 6.25 | 0.043 | 0.028 | 0.056 | 0.74 |
Total VFA | 53.3 | 51.7 | 89.7 | 76.5 | 19.44 | 0.090 | 0.62 | 0.69 |
Ammonia | 5.90 | 6.66 | 11.29 | 8.04 | 1.643 | 0.11 | 0.49 | 0.29 |
Acetate | 56.9 | 57.9 | 52.4 | 53.5 | 3.62 | 0.16 | 0.70 | 0.98 |
Propionate | 12.2 | 10.5 | 15.5 | 14.1 | 2.41 | 0.11 | 0.42 | 0.94 |
Butyrate | 4.89 | 5.07 | 5.54 | 5.38 | 1.745 | 0.72 | 0.99 | 0.90 |
Isobutyrate | 0.853 | 0.958 | 0.895 | 0.731 | 0.3431 | 0.72 | 0.91 | 0.61 |
Valerate | 0.309 | 0.433 | 0.653 | 0.709 | 0.0804 | 0.0055 | 0.19 | 0.59 |
Isovalerate | 0.850 | 1.111 | 1.008 | 0.833 | 0.4691 | 0.87 | 0.90 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanley, W.E.; Valiente, Ó.L.; de Vega, A. Rumen Degradation of Endosperm and Mesocarp Expellers from Acrocomia aculeata (Jacq.) Lodd. ex Mart. in Sheep Grazing Either Natural Pastures or Brachiaria brizantha cv. Marandu. Ruminants 2024, 4, 448-462. https://doi.org/10.3390/ruminants4030032
Stanley WE, Valiente ÓL, de Vega A. Rumen Degradation of Endosperm and Mesocarp Expellers from Acrocomia aculeata (Jacq.) Lodd. ex Mart. in Sheep Grazing Either Natural Pastures or Brachiaria brizantha cv. Marandu. Ruminants. 2024; 4(3):448-462. https://doi.org/10.3390/ruminants4030032
Chicago/Turabian StyleStanley, Winston E., Óscar L. Valiente, and Antonio de Vega. 2024. "Rumen Degradation of Endosperm and Mesocarp Expellers from Acrocomia aculeata (Jacq.) Lodd. ex Mart. in Sheep Grazing Either Natural Pastures or Brachiaria brizantha cv. Marandu" Ruminants 4, no. 3: 448-462. https://doi.org/10.3390/ruminants4030032
APA StyleStanley, W. E., Valiente, Ó. L., & de Vega, A. (2024). Rumen Degradation of Endosperm and Mesocarp Expellers from Acrocomia aculeata (Jacq.) Lodd. ex Mart. in Sheep Grazing Either Natural Pastures or Brachiaria brizantha cv. Marandu. Ruminants, 4(3), 448-462. https://doi.org/10.3390/ruminants4030032