Effects of Monensin, Calcareous Algae, and Essential Oils on Performance, Carcass Traits, and Methane Emissions Across Different Breeds of Feedlot-Finished Beef Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site, Animals, Treatments, and Management
2.2. Feed Analysis and Calculations
2.3. Methane Calculation
2.4. Statistical Analysis
3. Results
3.1. Feed Additives
3.2. Breed Type
4. Discussion
4.1. Effects of Feed Additives on Performance, Their Buffering Capacity, and Mineral Content
4.2. Breed
4.3. Methane Emission
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Item | MON | LCM | BEO |
---|---|---|---|
DMI, kg/d | 8.641 | 8.126 | 9.255 |
Dietary amount of Ca 1, g/d | 84.54 | 79 | 90.54 |
Dietary amount of P 2, g/d | 21.27 | 20 | 22.78 |
LitoNutri® amount of Ca 3, g/d | 0 | 13 | 0 |
Ca:P ratio | 3.9:1 | 4.6:1 | 3.9:1 |
References
- Stock, R.A.; Britton, R.A. Acidosis in Feedlot Cattle. In Scientific Update on Rumensin/Tylan for the Professional Feedlot Consultant; Elanco Animal Health: Indianapolis, IN, USA, 1994; pp. A1–A16. [Google Scholar]
- Santos, F.A.P.; De Souza, J.; Batistel, F.; Fleury, D.; Costa, A. Modalidades de Confinamento sem o Uso de Volumosos: Realidade e Limitações. Rev. Bras. Zootec. 2013, 42, 815–825. [Google Scholar]
- Marques, R.d.S.; Cooke, R.F. Effects of Ionophores on Ruminal Function of Beef Cattle. Animals 2021, 11, 2871. [Google Scholar] [CrossRef]
- Jouany, J.; Morgavi, D. Use of ‘Natural’ Products as Alternatives to Antibiotic Feed Additives in Ruminant Production. Animal 2007, 1, 1443–1466. [Google Scholar] [CrossRef]
- Silvestre, A.M.; Millen, D.D. The 2019 Brazilian Survey on Nutritional Practices Provided by Feedlot Cattle Consulting Nutritionists. Rev. Bras. Zootec. 2021, 50, e20200189. [Google Scholar] [CrossRef]
- Samuelson, K.L.; Hubbert, M.E.; Galyean, M.L.; Löest, C.A. Nutritional Recommendations of Feedlot Consulting Nutritionists: The 2015 New Mexico State and Texas Tech University Survey. J. Anim. Sci. 2016, 94, 2648–2663. [Google Scholar] [CrossRef] [PubMed]
- Duffield, T.F.; Merrill, J.K.; Bagg, R.N. Meta-Analysis of the Effects of Monensin in Beef Cattle on Feed Efficiency, Body Weight Gain, and Dry Matter Intake. J. Anim. Sci. 2012, 90, 4583–4592. [Google Scholar] [CrossRef]
- Congio, G.F.S.; Bannink, A.; Mayorga-Mogollón, O.L.; Latin America Methane Project Collaborators; Hristov, A.N. Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: A meta-analysis. J. Clean. Prod. 2021, 312, 127693. [Google Scholar] [CrossRef]
- Meyer, N.F.; Erickson, G.E.; Klopfenstein, T.J.; Greenquist, M.A.; Luebbe, M.K.; Williams, P.; Engstrom, M.A. Effect of Essential Oils, Tylosin, and Monensin on Finishing Steer Performance, Carcass Characteristics, Liver Abscesses, Ruminal Fermentation, and Digestibility. J. Anim. Sci. 2009, 87, 2346–2354. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.M.; Mandell, I.B.; Bohrer, B.M. Effects of Feeding Essential Oils and Benzoic Acid to Replace Antibiotics on Finishing Beef Cattle Growth, Carcass Characteristics, and Sensory Attributes. Appl. Anim. Sci. 2020, 36, 145–156. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Essential Oils as Modifiers of Rumen Microbial Fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical Evaluation of Essential Oils as Rumen Modifiers in Ruminant Nutrition: A Review. Sci. Total Environ. 2016, 545–546, 556–568. [Google Scholar] [CrossRef]
- Callaway, T.R.; Edrington, T.S.; Rychlik, J.L.; Genovese, K.J.; Poole, T.L.; Jung, Y.S.; Bischoff, K.M.; Anderson, R.C.; Nisbet, D.J. Ionophores: Their Use as Ruminant Growth Promotants and Impact on Food Safety. Curr. Issues Intest. Microbiol. 2003, 4, 43–51. [Google Scholar]
- Castanon, J.I.R. History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef]
- Duval, S.; McEwan, N.; Graham, R.; Wallace, R.; Newbold, C. Effect of a Blend of Essential Oil Compounds on the Colonization of Starch-Rich Substrates by Bacteria in the Rumen. J. Appl. Microbiol. 2007, 103, 2132–2141. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; Houlihan, A.J. Ionophore Resistance of Ruminal Bacteria and Its Potential Impact on Human Health. FEMS Microbiol. Rev. 2003, 27, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Galyean, M.L.; Defoor, P.J. Effects of Roughage Source and Level on Intake by Feedlot Cattle. J. Anim. Sci. 2003, 81 (Suppl. S2), E8–E16. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Blanch, M.; Ferret, A.; Moya, D. Is Subacute Ruminal Acidosis a pH Related Problem? Causes and Tools for Its Control. Anim. Feed Sci. Technol. 2012, 172, 42–50. [Google Scholar] [CrossRef]
- Enemark, J.M. The Monitoring, Prevention, and Treatment of Sub-Acute Ruminal Acidosis (SARA): A Review. Vet. J. 2008, 176, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Millen, D.D.; Pacheco, R.D.L.; Arrigoni, M.D.B.; Galyean, M.L.; Vasconcelos, J.T. A Snapshot of Management Practices and Nutritional Recommendations Used by Feedlot Nutritionists in Brazil. J. Anim. Sci. 2009, 87, 3427–3439. [Google Scholar] [CrossRef] [PubMed]
- Millen, D.D.; Monsalve, J.G. Retrato atual das recomendações nutricionais e de manejo nos confinamentos brasileiros (A Current Snapshot of the Nutritional and Management Recommendations in Brazilian Feedlots). YouTube 2024. Available online: https://www.youtube.com/watch?v=SCujpwZo8h8 (accessed on 22 June 2024).
- Yu, P.; Huber, J.T.; Santos, F.A.P.; Simas, J.M.; Theurer, C.B. Effects of Ground, Steam-Flaked, and Steam-Rolled Corn Grains on Performance of Lactating Cows. J. Dairy Sci. 1998, 81, 777–783. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine (NASEM). Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Weiss, W.P.; Conrad, H.R.; Pierre, R.S. A Theoretically Based Model for Predicting Total Digestible Nutrient Values of Forages and Concentrates. Anim. Feed Sci. Technol. 1992, 39, 95–119. [Google Scholar] [CrossRef]
- Galyean, M.L.; Hales, K.E. Prediction of Methane per Unit of Dry Matter Intake in Growing and Finishing Cattle from the Ratio of Dietary Concentrations of Starch to Neutral Detergent Fiber Alone or in Combination with Dietary Concentration of Ether Extract. J. Anim. Sci. 2022, 100, skac243. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 14th ed.; AOAC: Arlington, VA, USA, 1986. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); USDA Agricultural Handbook: Washington, DC, USA, 1970. [Google Scholar]
- Zinn, R.A.; Shen, Y. An Evaluation of Ruminally Degradable Intake Protein and Metabolizable Amino Acid Requirements of Feedlot Calves. J. Anim. Sci. 1998, 76, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means [Computer Software]. 2024. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 30 September 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org (accessed on 30 September 2024).
- Beauchemin, K.A.; McGinn, S.M. Methane Emissions from Beef Cattle: Effects of Fumaric Acid, Essential Oil, and Canola Oil. J. Anim. Sci. 2006, 84, 1489–1496. [Google Scholar] [CrossRef]
- Chaves, A.V.; Stanford, K.; Gibson, L.L.; McAllister, T.A.; Benchaar, C. Effects of Carvacrol and Cinnamaldehyde on Intake, Rumen Fermentation, Growth Performance, and Carcass Characteristics of Growing Lambs. Anim. Feed Sci. Technol. 2008, 145, 396–408. [Google Scholar] [CrossRef]
- Silva, A.D.S.; Zotti, C.A.; Carvalho, R.F.; Corte, R.R.; Cônsolo, N.R.B.; Silva, S.D.L.; Leme, P.R. Effect of Replacing Antibiotics with Functional Oils Following an Abrupt Transition to High-Concentrate Diets on Performance and Carcass Traits of Nellore Cattle. Anim. Feed Sci. Technol. 2019, 247, 53–62. [Google Scholar] [CrossRef]
- Ornaghi, M.G.; Passetti, R.A.; Torrecilhas, J.A.; Mottin, C.; Vital, A.C.P.; Guerrero, A.; Sañudo, C.; Campo, M.M.; Prado, I.N. Essential Oils in the Diet of Young Bulls: Effect on Animal Performance, Digestibility, Temperament, Feeding Behaviour, and Carcass Characteristics. Anim. Feed Sci. Technol. 2017, 234, 274–283. [Google Scholar] [CrossRef]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of Alfalfa Extract, Anise, Capsicum, and a Mixture of Cinnamaldehyde and Eugenol on Ruminal Fermentation and Protein Degradation in Beef Heifers Fed a High-Concentrate Diet. J. Anim. Sci. 2006, 84, 2801–2808. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Duynisveld, J.L.; Charmley, E. Effects of Monensin and Increasing Dose Levels of a Mixture of Essential Oil Compounds on Intake, Digestion, and Growth Performance of Beef Cattle. Can. J. Anim. Sci. 2006, 86, 91–96. [Google Scholar]
- Meschiatti, M.A.; Gouvêa, V.N.; Pellarin, L.A.; Batalha, C.D.; Biehl, M.V.; Acedo, T.S.; Dórea, J.R.R.; Tamassia, L.F.M.; Owens, F.N.; Santos, F.A.P. Feeding the Combination of Essential Oils and Exogenous α-Amylase Increases Performance and Carcass Production of Finishing Beef Cattle. J. Anim. Sci. 2019, 97, 456–471. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G.; Tylutki, T.P. Potential Environmental Benefits of Ionophores in Ruminant Diets. J. Environ. Qual. 2003, 32, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Khiaosa-ard, R.; Zebeli, Q. Meta-Analysis of the Effects of Essential Oils and Their Bioactive Compounds on Rumen Fermentation Characteristics and Feed Efficiency in Ruminants. J. Anim. Sci. 2013, 91, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
- Sgoifo Rossi, S.C.A.; Compiani, R.; Baldi, G.; Taylor, S.J.; Righi, F.; Simoni, M.; Quarantelli, A. Replacing Sodium Bicarbonate with Half Amount of Calcareous Marine Algae in the Diet of Beef Cattle. R. Braz. Zootec. 2019, 48, e20180129. [Google Scholar] [CrossRef]
- Quille, P.; Higgins, T.; Neville, E.W.; Regan, K.; O’Connell, S. Evaluation and Development of Analytical Procedures to Access Buffering Capacity of Carbonate Ruminant Feed Buffers. Animals 2024, 14, 2333. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.D.; Cate, R.E.; O’Connor-Robinson, C.I. A Marine Mineral Supplement Alters Markers of Bone Metabolism in Yearling Arabians. J. Equine Vet. Sci. 2010, 30, 419–424. [Google Scholar] [CrossRef]
- Neville, E.W.; Fahey, A.G.; Gath, V.P.; Molloy, B.P.; Taylor, S.J.; Mulligan, S.J. The Effects of Calcareous Marine Algae, with or without Marine Magnesium Oxide, and Sodium Bicarbonate on Rumen pH and Milk Production in Mid Lactation Dairy Cows. J. Dairy Sci. 2019, 102, 8027–8039. [Google Scholar] [CrossRef]
- Wu, Z.; Bernard, J.K.; Taylor, S.J. Effect of Feeding Calcareous Marine Algae to Holstein Cows Prepartum or Postpartum on Serum Metabolites and Performance. J. Dairy Sci. 2015, 98, 4629–4639. [Google Scholar] [CrossRef]
- Zinn, R.A.; Borques, J.L. Influence of Sodium Bicarbonate and Monensin on Utilization of a Fat-Supplemented, High-Energy Growing-Finishing Diet by Feedlot Steers. J. Anim. Sci. 1993, 71, 18–25. [Google Scholar] [CrossRef]
- Adams, D.C.; Galyean, M.L.; Kiesling, H.E.; Wallace, J.D.; Finkner, M.D. Influence of Viable Yeast Culture, Sodium Bicarbonate, and Monensin on Liquid Dilution Rate, Rumen Fermentation, and Feedlot Performance of Growing Steers and Digestibility in Lambs. J. Anim. Sci. 1981, 53, 780–789. [Google Scholar] [CrossRef]
- Russell, J.R.; Young, A.W.; Jorgensen, N.A. Effect of Sodium Bicarbonate and Limestone Additions to High Grain Diets on Feedlot Performance and Ruminal and Fecal Parameters in Finishing Steers. J. Anim. Sci. 1980, 51, 996–1002. [Google Scholar] [CrossRef]
- Costa, D.F.A.; Castro-Montoya, J.M.; Harper, K.; Trevaskis, L.; Jackson, E.L.; Quigley, S. Algae as Feedstuff for Ruminants: A Focus on Single-Cell Species, Opportunistic Use of Algal By-Products, and On-Site Production. Microorganisms 2022, 10, 2313. [Google Scholar] [CrossRef]
- Clark, J.H.; Plegge, A.W.; Davis, C.L.; McCoy, G.C. Effects of Calcium Carbonate on Ruminal Fermentation, Nutrient Digestibility, and Cow Performance. J. Dairy Sci. 1989, 72, 493–500. [Google Scholar] [CrossRef]
- Rauch, R.E.; Robinson, P.H.; Erasmus, L.J. Effects of Sodium Bicarbonate and Calcium Magnesium Carbonate Supplementation on Performance of High-Producing Dairy Cows. Anim. Feed Sci. Technol. 2012, 177, 180–193. [Google Scholar] [CrossRef]
- Bernard, J.K.; West, J.W.; Mullis, N.; Wu, Z.; Taylor, S.J. Evaluation of Calcareous Marine Algae Supplements on Production and Metabolic Parameters of Early Lactation Dairy Cows. Prof. Anim. Sci. 2014, 30, 649–656. [Google Scholar] [CrossRef]
- Cruywagen, C.W.; Taylor, S.; Beya, M.M.; Calitz, T. The Effect of Buffering Dairy Cow Diets with Limestone, Calcareous Marine Algae, or Sodium Bicarbonate on Ruminal pH Profiles, Production Responses, and Rumen Fermentation. J. Dairy Sci. 2015, 98, 5506–5514. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, R.D.; Garrett, J.E.; Gast, D.R.; Kirick, M.A.; Larson, D.A.; Meiske, J.C. Influence of Monensin on the Performance of Cattle. J. Anim. Sci. 1984, 58, 1484–1498. [Google Scholar] [CrossRef] [PubMed]
- Dowe, T.W.; Matsushima, J.; Arthaud, V.H. The Effects of Adequate and Excessive Calcium When Fed with Adequate Phosphorus in Growing Rations for Beef Calves. J. Anim. Sci. 1957, 16, 811–820. [Google Scholar] [CrossRef]
- Golovos, N.F.; Keener, H.A.; Davis, H.A. Effect of Pulverized Limestone and Dicalcium Phosphate on the Nutritive Value of Dairy Cattle Feed. J. Dairy Sci. 1958, 41, 676–682. [Google Scholar] [CrossRef]
- Purevjav, T.; Hoffman, M.P.; Ishdorj, A.; Conover, A.J.; Jedlicka, M.E.; Prusa, K.; Torrent, J.; Pusillo, G.M. Effects of Functional Oils and Monensin on Cattle Finishing Programs. Prof. Anim. Sci. 2013, 29, 426–434. [Google Scholar] [CrossRef]
- Benchaar, C.; Chaves, A.V.; Fraser, G.R.; Beauchemin, K.A.; McAllister, T.A. Effects of Essential Oils and Their Components on In Vitro Rumen Microbial Fermentation. Can. J. Anim. Sci. 2007, 87, 413–419. [Google Scholar] [CrossRef]
- Yang, W.Z.; Ametaj, B.N.; Benchaar, C.; He, M.L.; Beauchemin, K.A. Cinnamaldehyde in Feedlot Cattle Diets: Intake, Growth Performance, Carcass Characteristics, and Blood Metabolites. J. Anim. Sci. 2010, 88, 1082–1092. [Google Scholar] [CrossRef] [PubMed]
- Cruz, O.T.B.; Valero, M.V.; Zawadzki, F.; Rivaroli, D.C.; Do Prado, R.M.; Lima, B.S.; Do Prado, I.N. Effect of Glycerin and Essential Oils (Anacardium occidentale and Ricinus communis) on Animal Performance, Feed Efficiency, and Carcass Characteristics of Crossbred Bulls Finished in a Feedlot System. Ital. J. Anim. Sci. 2014, 13, 3492. [Google Scholar] [CrossRef]
- Huntington, G.B.; Emerick, R.J.; Embry, L.B. Sodium Bentonite or Sodium Bicarbonate as Aids in Feeding High-Concentrate Diets to Lambs. J. Anim. Sci. 1977, 45, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.H.; Emerick, R.J.; Embry, L.B. Sodium Bentonite and Sodium Bicarbonate in High-Concentrate Diets for Lambs and Steers. J. Anim. Sci. 1979, 48, 764–769. [Google Scholar] [CrossRef]
- Fulton, W.R.; Klopfenstein, T.J.; Britton, R.A. Adaptation to High Concentrate Diets by Beef Cattle. II. Effect of Ruminal pH Alteration on Rumen Fermentation and Voluntary Intake of Wheat Diets. J. Anim. Sci. 1979, 49, 785–789. [Google Scholar] [CrossRef]
- Wise, M.B.; Blumer, T.N.; Craig, H.B.; Barrick, E.R. Influence of Rumen Buffering Agents and Hay on Performance and Carcass Characteristics of Steers Fed All-Concentrate Rations. J. Anim. Sci. 1965, 24, 83–88. [Google Scholar] [CrossRef]
- Zinn, R.A. Comparative Feeding Value of Steam-Flaked Corn and Sorghum in Finishing Diets Supplemented with or without Sodium Bicarbonate. J. Anim. Sci. 1991, 69, 905–916. [Google Scholar] [CrossRef]
- Jedlicka, M.E.; Purevjav, T.; Conover, A.J.; Hoffman, M.P.; Pusillo, G.; Torrent, J. Effects of Functional Oils and Monensin Alone or in Combination on Feedlot Cattle Growth and Carcass Composition. Anim. Ind. Rep. 2009, 655, 46. [Google Scholar] [CrossRef]
- Moura, L.V.; Oliveira, E.R.; Fernandes, A.R.M.; Gabriel, A.M.A.; Silva, L.H.X.; Takiya, C.S.; Cônsolo, N.R.B.; Rodrigues, G.C.G.; Lemos, T.; Gandra, J.R. Feed Efficiency and Carcass Traits of Feedlot Lambs Supplemented Either Monensin or Increasing Doses of Copaiba (Copaifera spp.) Essential Oil. Anim. Feed Sci. Technol. 2017, 232, 110–118. [Google Scholar] [CrossRef]
- Gandra, J.R.; Gil, P.N.; Cônsolo, N.R.B.; Gandra, E.R.S.; Gobesso, A.A.D.O. Addition of Increasing Doses of Ricinoleic Acid from Castor Oil (Ricinus communis L.) in Diets of Nellore Steers in Feedlots. J. Anim. Feed Sci. 2012, 21, 566–576. [Google Scholar] [CrossRef]
- Bergen, W.G.; Bates, D.B. Ionophores: Their Effect on Production Efficiency and Mode of Action. J. Anim. Sci. 1984, 58, 1465–1483. [Google Scholar] [CrossRef]
- Page, S.W. The Role of Enteric Antibiotics in Livestock Production; Avcare Ltd.: Canberra, Australia, 2003. [Google Scholar]
- Castillejos, L.; Calsamiglia, S.; Martin-Tereso, J.; Ter Wijlen, H. In Vitro Evaluation of Effects of Ten Essential Oils at Three Doses on Ruminal Fermentation of High-Concentrate Feedlot-Type Diets. Anim. Feed Sci. Technol. 2008, 145, 259–270. [Google Scholar] [CrossRef]
- Putrino, S.M.U.; Leme, P.R.; Alleoni, G.F.; Lanna, D.P.D.; Lima, C.G.D.; Grossklaus, C.S.E. Exigências Líquidas de Proteína e Energia para Ganho de Peso de Tourinhos Brangus e Nelore Alimentados com Dietas Contendo Diferentes Proporções de Concentrado. Rev. Bras. Zootec. 2006, 35, 292–300. [Google Scholar] [CrossRef]
- Goulart, R.S.; Alencar, M.M.D.; Pott, E.B.; Cruz, G.M.D.; Tullio, R.R.; Alleoni, G.F.; Lanna, D.P.D. Composição Corporal e Exigências Líquidas de Proteína e Energia de Bovinos de Quatro Grupos Genéticos Terminados em Confinamento. Rev. Bras. Zootec. 2008, 37, 926–935. [Google Scholar] [CrossRef]
- Rubiano, G.A.G.; Arrigoni, M.D.B.; Martins, C.L.; Rodrigues, É.; Gonçalves, H.C.; Angerami, C.N. Desempenho, Características de Carcaça e Qualidade da Carne de Bovinos Superprecoces das Raças Canchim, Nelore e Seus Mestiços. Rev. Bras. Zootec. 2009, 38, 2490–2498. [Google Scholar] [CrossRef]
- Maggioni, D.; De Araújo Marques, J.; Rotta, P.P.; Perotto, D.; Ducatti, T.; Visentainer, J.V.; Do Prado, I.N. Animal Performance and Meat Quality of Crossbred Young Bulls. Livest. Sci. 2010, 127, 176–182. [Google Scholar] [CrossRef]
- Gregory, K.E.; Cundiff, L.V.; Koch, R.M. Breed Effects, Dietary Energy Density Effects, and Retained Heterosis on Different Measures of Gain Efficiency in Beef Cattle. J. Anim. Sci. 1994, 72, 1138–1154. [Google Scholar] [CrossRef]
- Valadares-Filho, S.C.; Chizzotti, M.L. Exigências Nutricionais de Bovinos de Corte. In Bovinocultura de Corte; Pires, A.V., Ed.; FEALQ: Piracicaba, Brazil, 2010; pp. 203–218. [Google Scholar]
- Torres, R.N.S.; Paschoaloto, J.R.; Ezequiel, J.M.B.; Da Silva, D.A.V.; Almeida, M.T.C. Meta-Analysis of the Effects of Essential Oil as an Alternative to Monensin in Diets for Beef Cattle. Vet. J. 2021, 272, 105659. [Google Scholar] [CrossRef]
- Tomkins, N.W.; Denman, S.E.; Pilajun, R.; Wanapat, M.; McSweeney, C.S.; Elliott, R. Manipulating Rumen Fermentation and Methanogenesis Using an Essential Oil and Monensin in Beef Cattle Fed a Tropical Grass Hay. Anim. Feed Sci. Technol. 2015, 200, 25–34. [Google Scholar] [CrossRef]
- Batley, R.J.; Romanzini, E.P.; da Silva, K.D.; de Souza, W.L.; Quigley, S.P.; Harper, K.J.; Costa, D.A. The Essential Oil Blend Agolin Ruminant L Reduces Methane Production In Vitro and In Vivo When Included in the Drinking Water of Cattle. J. Anim. Sci. 2024, 102, skae315. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.F.; Eloy, L.R.; Bosco, S.C.; Lasmar, P.V.; de Simas, J.M.; Leiva, T.; de Medeiros, S.R. An Updated Meta-Analysis of the Anti-Methanogenic Effects of Monensin in Beef Cattle. Transl. Anim. Sci. 2024, 8, txae032. [Google Scholar] [CrossRef]
Ingredient, %DM Unless Otherwise Specified | Dietary Proportion |
---|---|
Sugarcane bagasse | 8.50 |
Ground corn 1 | 42.20 |
Citrus pulp | 41.70 |
Soybean meal | 5.00 |
Urea | 1.30 |
Minerals and vitamin supplement 2 | 0.95 |
Sodium chloride | 0.35 |
Net energy for maintenance 3, Mcal/kg | 1.65 |
Net energy for gain 3, Mcal/kg | 1.04 |
Nutrient composition, %DM unless otherwise specified | |
Crude protein | 12.87 |
Ash | 4.97 |
Ether extract | 2.60 |
Starch 4 | 34.42 |
Neutral detergent fiber | 23.45 |
Acid detergent fiber | 19.86 |
Starch/NDF ratio 5 | 1.33 |
Ingredients, %DM | A1 | A2 | A3 |
---|---|---|---|
Sugarcane bagasse | 25.00 | 20.00 | 15.00 |
Ground corn | 33.20 | 35.70 | 38.70 |
Citrus pulp | 33.20 | 35.70 | 38.70 |
Soybean meal | 6.00 | 6.00 | 5.00 |
Urea | 1.30 | 1.30 | 1.30 |
Minerals and vitamin supplement 1 | 0.95 | 0.95 | 0.95 |
Sodium chloride | 0.35 | 0.35 | 0.35 |
Nutrient Composition 1, %DM Unless Otherwise Specified | Sugarcane Bagasse | Ground Corn | Citrus Pulp | Soybean Meal |
---|---|---|---|---|
CP | 2.16 | 8.47 | 7.44 | 51.17 |
Ash | 7.07 | 1.55 | 5.73 | 7.07 |
EE | 0.70 | 5.00 | 2.00 | 2.20 |
NDF | 84.15 | 15.5 | 20.97 | 26.35 |
ADF | 55.70 | 3.70 | 18.90 | 11.16 |
TDNs 2 | 39.2 | 84.23 | 70.05 | 71.57 |
Item 1 | Breed 2 | Additive 3 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
NEL | CROSS | MON | LCM | BEO | Breed | Additve | B × A | ||
Performance | |||||||||
Initial BW, kg | 393.9 | 406.3 | 400.1 | 400.1 | 400.1 | 2.49 | <0.0001 | 0.996 | 0.995 |
Final BW, kg | 524.85 | 568.41 | 552.2 | 538.87 | 549.45 | 3.72 | <0.0001 | 0.130 | 0.582 |
ADG, kg/d | 1.13 | 1.41 | 1.31 | 1.22 | 1.27 | 0.002 | <0.0001 | 0.292 | 0.550 |
DMI, kg/d | 7.88 | 9.47 | 8.64 ab | 8.13 b | 9.25 a | 0.230 | <0.0001 | 0.031 | 0.102 |
DMIBW, % | 1.71 | 1.94 | 1.81 ab | 1.71 b | 1.95 a | 0.04 | <0.0001 | 0.003 | 0.009 |
G:F ratio | 0.143 | 0.149 | 0.154 a | 0.146 ab | 0.138 b | 0.002 | 0.128 | 0.008 | 0.622 |
Carcass traits | |||||||||
HCW, kg | 295.9 | 319.7 | 311 | 303.3 | 309.9 | 2.26 | <0.0001 | 0.141 | 0.352 |
DP, % | 56.30 | 56.19 | 56.30 | 56.00 | 56.40 | 0.10 | 0.777 | 0.531 | 0.354 |
Methane emissions | |||||||||
CH4 production, g/d | 151.22 | 181.76 | 165.86 ab | 155.97 b | 177.63 a | 4.42 | <0.0001 | 0.030 | 0.102 |
CH4 intensity, g/kg | 132.14 | 130.43 | 127.42 | 130.84 | 135.48 | 1.830 | 0.596 | 0.186 | 0.404 |
g CH4/kg metabolic BW | 1.553 | 1.751 | 1.625 ab | 1.589 b | 1.745 a | 0.031 | <0.0001 | 0.045 | 0.165 |
Item | Breed | Additive 1 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
NEL | CROSS | MON | LCM | BEO | Breed | Additive | B × A | ||
Observed NE 2 | |||||||||
Maintenance | 1.996 | 2.219 | 2.184 a | 2.131 ab | 2.019 b | 0.030 | <0.0001 | 0.01 | 0.11 |
Gain | 1.341 | 1.528 | 1.491 a | 1.461 ab | 1.341 b | 0.025 | <0.0001 | 0.02 | 0.68 |
Observed/expected NE ratios 3 | |||||||||
Maintenance | 1.209 | 1.345 | 1.323 a | 1.291 ab | 1.224 b | 0.018 | <0.0001 | 0.02 | 0.12 |
Gain | 1.289 | 1.468 | 1.432 a | 1.403 ab | 1.310 b | 0.024 | <0.0001 | 0.03 | 0.20 |
Observed/expected NE ratios 4 | |||||||||
Maintenance | 1.095 | 1.220 | 1.199 a | 1.168 ab | 1.110 b | 0.016 | <0.0001 | 0.02 | 0.12 |
Gain | 1.126 | 1.128 | 1.252 a | 1.222 ab | 1.144 b | 0.021 | <0.0001 | 0.03 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerreiro, P.; Costa, D.F.A.; Limede, A.C.; Congio, G.F.S.; Meschiatti, M.A.P.; Bernardes, P.A.; Santos, F.A.P. Effects of Monensin, Calcareous Algae, and Essential Oils on Performance, Carcass Traits, and Methane Emissions Across Different Breeds of Feedlot-Finished Beef Cattle. Ruminants 2025, 5, 2. https://doi.org/10.3390/ruminants5010002
Guerreiro P, Costa DFA, Limede AC, Congio GFS, Meschiatti MAP, Bernardes PA, Santos FAP. Effects of Monensin, Calcareous Algae, and Essential Oils on Performance, Carcass Traits, and Methane Emissions Across Different Breeds of Feedlot-Finished Beef Cattle. Ruminants. 2025; 5(1):2. https://doi.org/10.3390/ruminants5010002
Chicago/Turabian StyleGuerreiro, Pedro, Diogo F. A. Costa, Arnaldo C. Limede, Guilhermo F. S. Congio, Murillo A. P. Meschiatti, Priscila A. Bernardes, and Flavio A. Portela Santos. 2025. "Effects of Monensin, Calcareous Algae, and Essential Oils on Performance, Carcass Traits, and Methane Emissions Across Different Breeds of Feedlot-Finished Beef Cattle" Ruminants 5, no. 1: 2. https://doi.org/10.3390/ruminants5010002
APA StyleGuerreiro, P., Costa, D. F. A., Limede, A. C., Congio, G. F. S., Meschiatti, M. A. P., Bernardes, P. A., & Santos, F. A. P. (2025). Effects of Monensin, Calcareous Algae, and Essential Oils on Performance, Carcass Traits, and Methane Emissions Across Different Breeds of Feedlot-Finished Beef Cattle. Ruminants, 5(1), 2. https://doi.org/10.3390/ruminants5010002