Phytochemical Composition and Effects of Aqueous Extracts from Moringa oleifera Leaves on In Vitro Ruminal Fermentation Parameters
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of MO Extracts
2.2. Phytochemical Composition of the Extracts
2.3. Antioxidant Activity
2.4. In Vitro Experiment
Incubation
2.5. Chemical Analysis
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Bioactive Compounds and Antioxidant Activity of Extracts
3.2. In Vitro Incubation
4. Discussion
4.1. Phytochemical Composition and Antioxidant Activity
4.2. Parameters of Ruminal Fermentation in Vitro
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akanmu, A.M.; Hassen, A.; Adejoro, F.A. Haematology and Serum Biochemical Indices of Lambs Supplemented with Moringa oleifera, Jatropha curcas and Aloe vera Leaf Extract as Anti-Methanogenic Additives. Antibiotics 2020, 9, 601. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhang, T.; Diao, Q. Effect of Dietary Supplementation of Moringa oleifera on the Production Performance and Fecal Methanogenic Community of Lactating Dairy Cows. Animals 2019, 9, 262. [Google Scholar] [CrossRef]
- Afzal, A.; Hussain, T.; Hameed, A.; Shahzad, M.; Mazhar, M.U.; Yang, G. Dietary Moringa oleifera Alters Periparturient Plasma and Milk Biochemical Indicators and Promotes Productive Performance in Goats. Front. Vet. Sci. 2022, 8, 787719. [Google Scholar] [CrossRef]
- Vergara-Jimenez, M.; Almatrafi, M.M.; Fernandez, M.L. Bioactive Components in Moringa oleifera Leaves Protect Against Chronic Disease. Antioxidants 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, J.R.O.; Silva, G.C.; Costa, R.A.; Fontenelle, J.R.L.d.S.; Vieira, G.H.F.; Fonteles Filho, A.A.; Vieira, R.H.S.d.F. In vitro Antibacterial Effect of Aqueous and Ethanolic Moringa Leaf Extracts. Asian Pac. J. Trop. Med. 2011, 4, 201–204. [Google Scholar] [CrossRef]
- Yan, Y.; Li, X.; Zhang, C.; Lv, L.; Gao, B.; Li, M. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics 2021, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Russel, J.B.; Strobel, H.J. Effects of Additives on In Vitro Ruminal Fermentation: A Comprasion of Monensin and Bactracin, Another Gram-Positive Antibiotic. J. Anim. Sci. 1988, 66, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Bannink, A.; Crompton, L.A.; Huhtanen, P.; Kreuzer, M.; McGee, M.; Nozière, P.; Reynolds, C.K.; Bayat, A.R.; Yáñez-Ruiz, D.R.; et al. Invited Review: Nitrogen in Ruminant Nutrition: A Review of Measurement Techniques. J. Dairy Sci. 2019, 102, 5811–5852. [Google Scholar] [CrossRef]
- Sarkar, S.; Bhatt, R.S.; Mahla, A.S.; Kumar, A. Supplementation of Moringa oleifera leaf concentrate pellets on nutrient utilization, antioxidant status, and reproductive performance of prolific ewes during extreme summer months in semi-arid tropical conditions. Trop. Anim. Health Prod. 2023, 55, 241. [Google Scholar] [CrossRef] [PubMed]
- Elghandour, M.M.Y.; Rodríguez-Ocampo, I.; Parra-Garcia, A.; Salem, A.Z.M.; Greiner, R.; Márquez-Molina, O.; Barros-Rodríguez, M.; Barbabosa-Pliego, A. Biogas Production from Prickly Pear Cactus Containing Diets Supplemented With Moringa oleifera Leaf Extract for a Cleaner Environmental Livestock Production. J. Clean. Prod. 2018, 185, 547–553. [Google Scholar] [CrossRef]
- Pedraza-Hernández, J.M.; Elghandour, M.M.Y.; Khusro, A.; Camacho-Diaz, L.M.; Vallejo, L.H.; Barbabosa-Pliego, A.; Salem, A.Z.M. Mitigation of Ruminal Biogases Production from Goats Using Moringa oleifera Extract and Live Yeast Culture for a Cleaner Agriculture Environment. J. Clean. Prod. 2019, 234, 779–786. [Google Scholar] [CrossRef]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing Total Phenolics, Total Flavonoids Contents and Antioxidant Activity of Moringa oleifera Leaf Extract by the Appropriate Extraction Method. Ind. Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Obdoni, B.O.; Ochuko, P.O. Phytochemical Studies and Comparative Efficacy of the Crude Extracts of Some Haemostatic Plants in Edo and Delta States of Nigeria. Glob. J. Pure Appl. Sci. 2002, 8, 203–208. [Google Scholar] [CrossRef]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical Constituents of Some Nigerian Medicinal Plants. Afr. J. Biotechnol. 2005, 4, 685–688. [Google Scholar] [CrossRef]
- Vetter, R.E.; Barbosa, A.P.R. Mangrove Bark: A Renewable Resin Source for Wood Adhesives. Acta Amaz. 1995, 25, 69–72. [Google Scholar] [CrossRef]
- Harborne, J.B. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, 2nd ed.; Chapman and Hall: London, UK, 1973; pp. 54–84. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the Total Phenolic, Flavonoid and Proline Contents in Burkina Fasan Honey, as Well as their Radical Scavenging Activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Soler-Rivas, C.; Espín, J.C.; Wichers, H.J. An Easy and Fast Test to Compare Total Free Radical Scavenger Capacity of Foodstuffs. Phytochem. Anal. 2000, 11, 330–338. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses. In Agriculture Handbook, 1st ed.; US Department of Agriculture: Washington, DC, USA, 1970. Available online: https://searchworks.stanford.edu/view/9641453 (accessed on 17 January 2025).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Fenner, H. Methods for Determining Total Volatile Base in Rumen Fluid by Steam Distillation. J. Dairy Sci. 1965, 48, 249–251. [Google Scholar] [CrossRef] [PubMed]
- Vieira, P.F. Effect of Formaldehyde on the Protection of Proteins and Lipids in Feed for Ruminants. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 1980. [Google Scholar]
- D’Agosto, M.; Carneiro, M.E. Evaluation of Lugol Solution Used for Counting Rumen Ciliates. Rev. Bras. Zool. 1999, 16, 725–729. [Google Scholar] [CrossRef]
- du Toit, E.S.; Sithole, J.; Vorster, J. Leaf Harvesting Severity Affects Total Phenolic And Tannin Content of Fresh and Dry Leaves of Moringa oleifera Trees Growing in Gauteng, South Africa. S. Afr. J. Bot. 2020, 129, 336–340. [Google Scholar] [CrossRef]
- Nouman, W.; Anwar, F.; Gull, T.; Newton, A.; Rosa, E.; Domínguez-Perles, R. Profiling of Polyphenolics, Nutrients and Antioxidant Potential of Germplasm’s Leaves From Seven Cultivars of Moringa oleifera Lam. Ind. Crops Prod. 2016, 83, 166–176. [Google Scholar] [CrossRef]
- Kim, D.S.; Choi, M.H.; Shin, H.J. Extracts of Moringa oleifera Leaves from Different Cultivation Regions Show Both Antioxidant and Antiobesity Activities. J. Food Biochem. 2020, 44, 13282. [Google Scholar] [CrossRef] [PubMed]
- Tetteha, O.N.A.; Ulrichsa, C.; Huyskens-Keila, S.; Mewisa, I.; Amaglob, N.K.; Oduroc, I.N.; Adarkwahd, C.; Obeng-Oforid, D.; Förster, N. Effects of Harvest Techniques and Drying Methods on the Stability of Glucosinolates in Moringa oleifera Leaves During Post-Harvest. Sci. Hortic. 2019, 246, 998–1004. [Google Scholar] [CrossRef]
- Iwansyah, A.C.; Manh, T.D.; Andriana, Y.; Aiman bin Hessan, M.; Kormin, F.; Cuong, D.X.; Xuan Hoan, N.; Thai Ha, H.; Thi Yen, D.; Thinh, P.V.; et al. Effects of Various Drying Methods on Selected Physical and Antioxidant Properties of Extracts from Moringa oliefera Leaf Waste. Sustainability 2020, 12, 8586. [Google Scholar] [CrossRef]
- Dhakad, A.K.; Singh, K.; Oberoi, H.K.; Kumar, V.; Shah, J.N. Proximate Composition, Mineral Profiling and Antioxidant Potential in Moringa oleifera Genotypes Affected with Leaf Maturity Stage. S. Afr. J. Bot. 2024, 168, 227–235. [Google Scholar] [CrossRef]
- Ebeid, H.M.; Kholif, A.E.; Chrenkova, M.; Anele, U.Y. Ruminal Fermentation Kinetics of Moringa oleifera Leaf and Seed as Protein Feeds in Dairy Cow Diets: In Sacco Degradability and Protein and Fiber Fractions Assessed by the CNCPS Method. Agroforest Syst. 2020, 94, 905–915. [Google Scholar] [CrossRef]
- Kc, Y.; Rai, R.; Katuwal, N.; Shiwakoti, L.D.; Pant, B.R.; Bajgai, T.R.; Dura, S.; Chaudhary, D.K.; Raghavan, V.; Upadhyaya, J. Phytochemicals, nutritional, antioxidant activity, and sensory analyses of Moringa oleifera Lam. collected from mid-hill region of Nepal. Nat. Prod. Res. 2022, 36, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera leaves: An Overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef] [PubMed]
- Bennour, N.; Mighri, H.; Bouhamda, T.; Mabrouk, M.; Apohan, E.; Yesilada, O.; Küçükbay, H.; Akrout, A. Moringa oleifera Leaves: Could Solvent and Extraction Method Affect Phenolic Composition and Bioactivities? Prep. Biochem. Biotechnol. 2021, 51, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Nobósse, P.; Fombang, E.N.; Mbofung, C.M.F. Effects of Age and Extraction Solvent on Phytochemical Content and Antioxidant Activity of Fresh Moringa oleifera L. Leaves. Food Sci. Nutr. 2018, 6, 2188–2198. [Google Scholar] [CrossRef] [PubMed]
- Matshediso, P.G.; Cukrowska, E.; Chimuka, L. Development of Pressurised Hot Water Extraction (PHWE) for Essential Compounds from Moringa oleifera Leaf Extracts. Food Chem. 2015, 172, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Zinder, M.; Leibovich, H.; Vaknin, Y.; Sagi, G.; Shabtay, A.; Ben-Meir, Y.; Nikbachat, M.; Portnik, Y.; Yishay, M.; Miron, J. Effect of feeding lactating cows with ensiled mixture of Moringa oleifera, wheat hay and molasses, on digestibility and efficiency of milk production. Anim. Feed Sci. Technol. 2016, 211, 75–83. [Google Scholar] [CrossRef]
- Leitanthem, V.K.; Chaudhary, P.; Maiti, S.; Mohini, M.; Mondal, G. Impact of Moringa oleifera Leaves on Nutrient Utilization, Enteric Methane Emissions, and Performance of Goat Kids. Animals 2022, 13, 97. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Morsy, T.A.; Salem, A.Z.M.; Lopez, S.; Kholif, A.M. Moringa oleifera Leaf Meal as a Protein Source in Lactating Goat’s Diets: Feed Intake, Digestibility, Ruminal Fermentation, Milk Yield and Composition, and its Fatty Acids Profile. Small Rumin. Res. 2015, 129, 129–137. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Anele, U.Y.; Galyean, M.L. Extract of Moringa oleifera Leaves Improves Feed Utilization of Lactating Nubian Goats. Small Rumin. Res. 2018, 158, 69–75. [Google Scholar] [CrossRef]
- Singh, R.K.; Dey, A.; Paul, S.S.; Singh, M.; Dahiya, S.S.; Punia, B.S. Associative Effects of Plant Secondary Metabolites in Modulating in vitro Methanogenesis, Volatile Fatty Acids Production and Fermentation of Feed in Buffalo (Bubalus bubalis). Agroforest Syst. 2020, 94, 1555–1566. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Hashem, N.M.; Morsy, A.S.; El-Azrak, K.M.; El-Din, A.N.; Sallam, S.M. Comparative effects of Moringa oleifera root bark and monensin supplementations on ruminal fermentation, nutrient digestibility and growth performance of growing lambs. Anim. Feed Sci. Technol. 2018, 235, 189–201. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Hassan, E.H. Effects of dietary inclusion of Moringa oleifera Lam. leaf meal on nutrient digestibility, rumen fermentation, ruminal enzyme activities and growth performance of buffalo calves. Saudi J. Biol. Sci. 2021, 28, 4430–4436. [Google Scholar] [CrossRef]
- Elliot, J.M. Propionate metabolism and vitamin B12 Ruckebusch. In Digestive Physiology and Metabolism in Ruminants; Ruckebusch, Y., Thivend, P., Eds.; Springer: Dordrecht, The Netherlands, 1980. [Google Scholar] [CrossRef]
Nutrient | Quantity (%) |
---|---|
Dry Matter | 89.81 |
Mineral Matter | 9.10 |
Crude Protein | 17.43 |
Ether Extract | 4.06 |
Neutral Detergent Fiber | 55.20 |
Acid Detergent Fiber | 34.24 |
Item | Dry Leaves | Fresh Leaves | SEM | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Maceration | Infusion | Decoction | Maceration | Infusion | Decoction | Leaves | Method | L*M | ||
Saponins (mg/100 mL) | 1.73 | 1.74 | 1.76 | 5.11 | 5.16 | 5.14 | 0.066 | <0.001 | 0.698 | 0.860 |
Flavonoids (mg/100 mL) | 4.09 | 4.27 | 4.18 | 12.14 | 12.56 | 12.41 | 0.079 | <0.001 | <0.001 | 0.066 |
Tannins (mg/100 mL) | 8.29 | 8.55 | 7.99 | 22.41 | 23.05 | 21.46 | 0.741 | <0.001 | 0.078 | 0.500 |
Alkaloids (mg/100 mL) | 3.57 | 3.53 | 3.54 | 10.42 | 10.25 | 10.41 | 0.075 | <0.001 | 0.064 | 0.204 |
Total Phenols (mg TAE/100 g) | 100.10 | 102.00 | 98.00 | 105.00 | 108.95 | 104.00 | 0.069 | <0.001 | 0.008 | 0.698 |
DPPH (IC50 µg/mL) 1 | 51.00 | 50.58 | 48.00 | 57.00 | 57.13 | 60.12 | 0.087 | <0.001 | 0.979 | 0.054 |
ABTS (IC50 µg/mL) 2 | 68.00 b | 55.25 c | 53.00 d | 79.00 a | 60.12 cd | 50.20 d | 0.097 | <0.001 | <0.001 | <0.001 |
Item | Control | Dry Leaves | Fresh Leaves | SEM | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Maceration | Infusion | Decoction | Maceration | Infusion | Decoction | Leaves | Method | L*M | FL*C | |||
Acetate, mM | 9.49 | 10.21 | 9.03 | 10.65 | 17.01 | 14.95 | 13.36 | 3.120 | 0.029 | 0.714 | 0.644 | 0.030 |
Propionate, mM | 3.37 | 4.69 | 3.83 | 4.13 | 7.26 | 5.45 | 5.41 | 1.437 | 0.070 | 0.409 | 0.812 | 0.049 |
Butyrate. mM | 1.10 | 1.19 | 0.86 | 1.10 | 1.78 | 1.49 | 1.54 | 0.389 | 0.049 | 0.553 | 0.937 | 0.060 |
Isovaleric, mM | 0.22 | 0.24 | ND | 0.24 | 0.20 | 0.24 | 0.23 | 0.030 | 0.576 | 0.737 | 0.693 | 0.843 |
Valeric, mM | ND | 0.27 | ND | ND | 0.21 | 0.27 | 0.20 | 0.003 | 0.058 | 0.072 | ND | ND |
Total, mM | 14.19 | 16.47 | 13.71 | 16.00 | 26.35 | 22.15 | 20.53 | 4.871 | 0.035 | 0.568 | 0.736 | 0.036 |
Acetate, % | 66.88 | 62.16 | 65.00 | 66.47 | 64.57 | 67.58 | 65.50 | 2.908 | 0.455 | 0.358 | 0.642 | 0.590 |
Propionate, % | 23.77 | 28.45 | 28.87 | 26.03 | 27.50 | 24.70 | 25.90 | 3.595 | 0.431 | 0.740 | 0.717 | 0.267 |
Butyrate, % | 7.78 | 7.19 | 6.14 | 6.78 | 6.75 | 6.72 | 7.49 | 0.656 | 0.482 | 0.346 | 0.448 | 0.044 |
Isovaleric, % | 1.56 | 1.59 | ND | 1.42 | 0.76 | 0.95 | 1.41 | 0.567 | 0.478 | 0.929 | 0.576 | 0.129 |
Valeric, % | ND | 1.22 | ND | ND | 0.81 | 1.05 | 0.81 | 0.032 | 0.066 | 0.156 | ND | ND |
Acetate: Propionate | 2.82 | 2.18 | 2.33 | 2.59 | 2.37 | 2.74 | 2.55 | 0.417 | 0.469 | 0.587 | 0.756 | 0.305 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, I.S.T.d.; Fernandes, T.; Santos, A.R.D.; González Aquino, C.; Vega Britez, G.D.; Vargas Junior, F.M.d. Phytochemical Composition and Effects of Aqueous Extracts from Moringa oleifera Leaves on In Vitro Ruminal Fermentation Parameters. Ruminants 2025, 5, 4. https://doi.org/10.3390/ruminants5010004
Oliveira ISTd, Fernandes T, Santos ARD, González Aquino C, Vega Britez GD, Vargas Junior FMd. Phytochemical Composition and Effects of Aqueous Extracts from Moringa oleifera Leaves on In Vitro Ruminal Fermentation Parameters. Ruminants. 2025; 5(1):4. https://doi.org/10.3390/ruminants5010004
Chicago/Turabian StyleOliveira, Inessa Steffany Torres de, Tatiane Fernandes, Aylpy Renan Dutra Santos, Carolina González Aquino, Gustavo Daniel Vega Britez, and Fernando Miranda de Vargas Junior. 2025. "Phytochemical Composition and Effects of Aqueous Extracts from Moringa oleifera Leaves on In Vitro Ruminal Fermentation Parameters" Ruminants 5, no. 1: 4. https://doi.org/10.3390/ruminants5010004
APA StyleOliveira, I. S. T. d., Fernandes, T., Santos, A. R. D., González Aquino, C., Vega Britez, G. D., & Vargas Junior, F. M. d. (2025). Phytochemical Composition and Effects of Aqueous Extracts from Moringa oleifera Leaves on In Vitro Ruminal Fermentation Parameters. Ruminants, 5(1), 4. https://doi.org/10.3390/ruminants5010004