Impact of Blue Haslea spp. Blooms on Benthic Diatom and Bacterial Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Samples Process for Diatom Analysis
2.3. Bacterial DNA Extraction, PCR Amplification and Data Processing
2.4. Statistical Analysis
3. Results
3.1. Environmental Parameters
3.2. Diatom Community
3.3. Bacterial Community
4. Discussion
4.1. Diatom Community Associated within the Biofilm
4.2. Bacteria Associated with the Biofilm
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cooksey, K.E.; Wigglesworth-Cooksey, B. Adhesion of bacteria and diatoms to surfaces in the sea: A review. Aquat. Microb. Ecol. 1995, 9, 87–96. [Google Scholar] [CrossRef]
- Underwood, G.J.C.; Kromkamp, J. Primary production by phytoplankton and microphytobenthos in estuaries. Adv. Ecol. Res. 1999, 29, 93–153. [Google Scholar] [CrossRef]
- Gawne, B.; Wang, Y.; Hoagland, K.D.; Gretz, M.R. Role of bacteria and bacterial exopolymer in the attachment of Achnanthes longipes (Bacillariophyceae). Biofouling 1998, 13, 137–156. [Google Scholar] [CrossRef]
- Tuji, A. Observation of developmental processes in loosely attached diatom (Bacillariophyceae) communities. Phycol. Res. 2000, 48, 75–84. [Google Scholar] [CrossRef]
- Brotas, V.; Cabrita, T.; Portugal, A.; Serôdio, J.; Catarino, F. Spatio-Temporal Distribution of the Microphytobenthic Biomass in Intertidal Flats of Tagus Estuary (portugal). In Space Partition within Aquatic Ecosystems; Balvay, G., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 93–104. [Google Scholar]
- Wotton, R.S. The essential role of exopolymers (EPS) in aquatic systems. Oceanogr. Mar. Biol. Annu. Rev. 2004, 42, 57–94. [Google Scholar]
- Barbara, G.M.; Mitchell, J.G. Bacterial tracking of motile algae. FEMS Microbiol. Ecol. 2003, 44, 79–87. [Google Scholar] [CrossRef]
- Cole, J.J. Interactions Between Bacteria and Algae in Aquatic Ecosystems. Annu. Rev. Ecol. Syst. 1982, 13, 291–314. [Google Scholar] [CrossRef]
- Waters, C.M.; Bassler, B.L. QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [PubMed]
- Ricel, E. Chemical nature of allelopathic agents. In Allelopathy; Elsevier Science: Amsterdam, The Netherlands, 1984; pp. 266–291. [Google Scholar]
- Hilt, S. Allelopathic inhibition of epiphytes by submerged macrophytes. Aquat. Bot. 2006, 85, 252–256. [Google Scholar] [CrossRef]
- Jyrkänkallio-Mikkola, J.; Heino, J.; Soininen, J. Beta diversity of stream diatoms at two hierarchical spatial scales: Implications for biomonitoring. Freshw. Biol. 2016, 61, 239–250. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Paerl, H.W.; Hall, N.S.; Calandrino, E.S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 2011, 409, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Gastineau, R.; Prasetiya, F.S.; Falaise, C.; Cognie, B.; Decottignies, P.; Morançais, M.; Méléder, V.; Davidovich, N.; Turcotte, F.; Tremblay, R.; et al. Marennine-Like Pigments: Blue Diatom or Green Oyster Cult. In Blue Biotechnology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 529–551. ISBN 978-3-527-80171-8. [Google Scholar]
- Gastineau, R.; Turcotte, F.; Pouvreau, J.-B.; Morançais, M.; Fleurence, J.; Windarto, E.; Prasetiya, F.S.; Arsad, S.; Jaouen, P.; Babin, M.; et al. Marennine, Promising Blue Pigments from a Widespread Haslea Diatom Species Complex. Mar. Drugs 2014, 12, 3161–3189. [Google Scholar] [CrossRef] [PubMed]
- Pouvreau, J.-B.; Housson, E.; Tallec, L.L.; Morançais, M.; Rincé, Y.; Fleurence, J.; Pondaven, P. Growth inhibition of several marine diatom species induced by the shading effect and allelopathic activity of marennine, a blue-green polyphenolic pigment of the diatom Haslea ostrearia (Gaillon/Bory) Simonsen. J. Exp. Mar. Biol. Ecol. 2007, 352, 212–225. [Google Scholar] [CrossRef]
- Prasetiya, F.S.; Safitri, I.; Widowati, I.; Cognie, B.; Decottignies, P.; Gastineau, R.; Morançais, M.; Windarto, E.; Tremblay, R.; Mouget, J.-L. Does allelopathy affect co-culturing Haslea ostrearia with other microalgae relevant to aquaculture? J. Appl. Phycol. 2016, 28, 2241–2254. [Google Scholar] [CrossRef]
- Moreau, J. Contribution aux recherches écologiques sur les claires à huîtres du bassin de Marennes-Oléron. Rev. Trav. De L’institut. Pêches Marit. 1970, 34, 381–466. [Google Scholar]
- Turpin, V. Etude des Événements Physicochimiques et Biologiques Présidant à la Prolifération d’Haslea ostrearia (Simonsen) dans les Claires Ostréicoles de la Région de Marennes-Oléron: Implications dans la Maîtrise du Verdissement. Ph.D. Thesis, University of Nantes, Brittany, France, 1999. [Google Scholar]
- Falaise, C.; James, A.; Travers, M.-A.; Zanella, M.; Badawi, M.; Mouget, J.-L. Complex Relationships between the Blue Pigment Marennine and Marine Bacteria of the Genus Vibrio. Mar. Drugs 2019, 17, 160. [Google Scholar] [CrossRef] [PubMed]
- Seveno, J.; Car, A.; Sirjacobs, D.; Fullgrabe, L.; Dupčić Radić, I.; Lejeune, P.; Leignel, V.; Mouget, J.-L. Benthic Diatom Blooms of Blue Haslea spp. in the Mediterranean Sea. Mar. Drugs 2023, 21, 583. [Google Scholar] [CrossRef]
- Gastineau, R.; Hardivillier, Y.; Leignel, V.; Tekaya, N.; Morançais, M.; Fleurence, J.; Davidovich, N.; Jacquette, B.; Gaudin, P.; Hellio, C.; et al. Greening effect on oysters and biological activities of the blue pigments produced by the diatom Haslea karadagensis (Naviculaceae). Aquaculture 2012, 368–369, 61–67. [Google Scholar] [CrossRef]
- Prasetiya, F.S.; Sunarto, S.; Bachtiar, E.; Agung, M.U.K.; Nathanael, B.; Pambudi, A.C.; Lestari, A.D.; Astuty, S.; Mouget, J.-L. Effect of the blue pigment produced by the tropical diatom Haslea ostrearia on marine organisms from different trophic levels and its bioactivity. Aquac. Rep. 2020, 17, 100389. [Google Scholar] [CrossRef]
- Cirri, E.; Vyverman, W.; Pohnert, G. Biofilm interactions—Bacteria modulate sexual reproduction success of the diatom Seminavis robusta. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef]
- Pérez-Burillo, J.; Valoti, G.; Witkowski, A.; Prado, P.; Mann, D.G.; Trobajo, R. Assessment of marine benthic diatom communities: Insights from a combined morphological–metabarcoding approach in Mediterranean shallow coastal waters. Mar. Pollut. Bull. 2022, 174, 113183. [Google Scholar] [CrossRef]
- Solano, C.; Echeverz, M.; Lasa, I. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 2014, 18, 96–104. [Google Scholar] [CrossRef]
- Yang, C.; Song, G.; Zhu, Q.; Liu, S.; Xia, C. The influence of bacterial quorum-sensing inhibitors against the formation of the diatom-biofilm. Chem. Ecol. 2016, 32, 169–181. [Google Scholar] [CrossRef]
- Car, A.; Witkowski, A.; Jasprica, N.; Ljubimir, S.; Čalić, M.; Dobosz, S.; Dupčić Radić, I.; Hrustić, E. Epilithic diatom communities from areas of invasive Caulerpa species (Caulerpa taxifolia and Caulerpa cylindracea) in the Adriatic Sea, NE Mediterranean. Mediterr. Mar. Sci. 2019, 20, 151–173. [Google Scholar] [CrossRef]
- Yılmaz, E.; Mann, D.G.; Gastineau, R.; Trobajo, R.; Solak, C.N.; Górecka, E.; Turmel, M.; Lemieux, C.; Ertorun, N.; Witkowski, A. Description of Naviculavanseea sp. nov. (Naviculales, Naviculaceae), a new species of diatom from the highly alkaline Lake Van (Republic of Türkiye) with complete characterisation of its organellar genomes and multigene phylogeny. PhytoKeys 2024, 241, 27–48. [Google Scholar] [CrossRef]
- Zachariasse, W.J.; Riedel, W.R.; Sanfilippo, A.; Schmidt, R.R.; Brolsma, M.J.; Schrader, H.J.; Gersonde, R.; Drooger, M.M.; Broekman, J.A. Microplaeontological counting methods and techniques—An excercise on an eight metres section of the lower Pliocene of Capo Rossello. Utrecht Micropal. Bull. 1978, 17, 129–176. [Google Scholar]
- Witkowski, A.; Lange-Bertalot, H.; Metzeltin, D. Iconographia Diatomologica, Diatom Flora of Marine Coasts, I.; AR Gantner: Ruggell, Liechtenstein, 2000; Volume 7. [Google Scholar]
- Witkowski, A.; Sullivan, M.J.; Bogaczewicz-Adamczak, B.; Bąk, M.; Rhiel, E.; Ribeiro, L.; Richard, P. Morphology and distribution of a little known but widespread diatom (Bacillariophyceae), Navicula spartinetensis Sullivan et Reimer. Diatom Res. 2012, 27, 43–51. [Google Scholar] [CrossRef]
- Loir, M.; Novarino, G. Diatom Monographs, Volume 16: Marine Mastogloia Thwaites ex W. Sm. and Stigmaphora Wallich Species from the French Lesser Antilles; Koeltz Botanical: Oberreifenberg, Germany, 2016. [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Somerfield, P.J.; Clarke, K.R.; Warwick, R.M. Simpson Index. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: Amsterdam, The Netherlands, 2008; pp. 3252–3255. ISBN 978-0-08-045405-4. [Google Scholar]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.S.; Smol, J.P.; Kingston, J.C.; Charles, D.F. Diatoms: Powerful Indicators of Environmental Change. Available online: https://pubs.acs.org/doi/pdf/10.1021/es00025a002 (accessed on 30 May 2024).
- Medlin, L.K. Community Analysis of Epiphytic Diatoms from Selected Species of Macroalgae Collected along the Texas Coast of the Gulf of Mexico; Texas A&M University: College Station, TX, USA, 1983. [Google Scholar]
- Snoeijs, P. Distribution of Epiphytic Diatom Species Composition, Diversity and Biomass on Different Macroalgal Hosts Along Seasonal and Salinity Gradients in the Baltic Sea. Diatom Res. 1994, 9, 189–211. [Google Scholar] [CrossRef]
- Car, A.; Witkowski, A.; Dobosz, S.; Burfeind, D.D.; Meinesz, A.; Jasprica, N.; Ruppel, M.; Kurzydłowski, K.J.; Płociński, T. Description of a new marine diatom, Cocconeis caulerpacola sp. nov. (Bacillariophyceae), epiphytic on invasive Caulerpa species. Eur. J. Phycol. 2012, 47, 433–448. [Google Scholar] [CrossRef]
- Hafner, D.; Jasprica, N.; Carić, M. Epiphytic diatoms on Nymphaea alba L. Leaves in a Sub-Mediterranean wetland (South Bosnia and Herzegovina). Nat. Croat. Period. Musei Hist. Nat. Croat. 2013, 22, 319–331. [Google Scholar]
- Majewska, R.; D’Alelio, D.; De Stefano, M. Cocconeis Ehrenberg (Bacillariophyta), a genus dominating diatom communities associated with Posidonia oceanica Delile (monocotyledons) in the Mediterranean Sea. Aquat. Bot. 2014, 112, 48–56. [Google Scholar] [CrossRef]
- Sieburth, J.M.; Thomas, C.D. Fouling on Eelgrass (Zostera Marina L.). J. Phycol. 1973, 9, 46–50. [Google Scholar] [CrossRef]
- Dobretsov, S.; Dahms, H.-U.; Qian, P.-Y. Antilarval and antimicrobial activity of waterborne metabolites of the sponge Callyspongia (Euplacella) pulvinata: Evidence of allelopathy. Mar. Ecol. Prog. Ser. 2004, 271, 133–146. [Google Scholar] [CrossRef]
- Nenadović, T.; Šarčević, T.; Čižmek, H.; Godrijan, J.; Marić Pfannkuchen, D.; Pfannkuchen, M.; Ljubešić, Z. Development of periphytic diatoms on different artificial substrates in the Eastern Adriatic Sea. Acta Bot. Croat. 2015, 74, 377–392. [Google Scholar] [CrossRef]
- Turpin, V.; Robert, J.-M.; Goulletquer, P.; Massé, G.; Rosa, P. Oyster greening by outdoor mass culture of the diatom Haslea ostrearia Simonsen in enriched seawater. Aquac. Res. 2001, 32, 801–809. [Google Scholar] [CrossRef]
- Pouvreau, J.-B.; Morançais, M.; Fleurence, J.; Pondaven, P. Method for the quantification of the blue-green pigment “marennine” synthesized by the marine diatom Haslea ostrearia (Gaillon/Bory) Simonsen using HPLC gel-filtration and photodiode-array detection. J. Appl. Phycol. 2007, 19, 263–270. [Google Scholar] [CrossRef]
- Turpin, V.; Robert, J.-M.; Goulletquer, P. Limiting nutrients of oyster pond seawaters in the Marennes-Oléron region for Haslea ostrearia: Applications to the mass production of the diatom in mesocosm experiments. Aquat. Living Resour. 1999, 12, 335–342. [Google Scholar] [CrossRef]
- Krause, J.W.; Schulz, I.K.; Rowe, K.A.; Dobbins, W.; Winding, M.H.S.; Sejr, M.K.; Duarte, C.M.; Agustí, S. Silicic acid limitation drives bloom termination and potential carbon sequestration in an Arctic bloom. Sci. Rep. 2019, 9, 8149. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.M.; Tréguer, P. Role of silicon as a limiting nutrient to Antarctic diatoms: Evidence from kinetic studies in the Ross Sea ice-edge zone. Mar. Ecol. Prog. Ser. 1992, 80, 255–264. [Google Scholar] [CrossRef]
- Paasche, E. Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient. Mar. Biol. 1973, 19, 117–126. [Google Scholar] [CrossRef]
- Buchan, A.; LeCleir, G.R.; Gulvik, C.A.; González, J.M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 2014, 12, 686–698. [Google Scholar] [CrossRef]
- Landa, M.; Blain, S.; Christaki, U.; Monchy, S.; Obernosterer, I. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms. ISME J. 2016, 10, 39–50. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, K.; Shen, L.; Chen, H.; Hou, F.; Zhou, X.; Zhang, D.; Zhu, X. Microbial Community Dynamics and Assembly Follow Trajectories of an Early-Spring Diatom Bloom in a Semienclosed Bay. Appl. Environ. Microbiol. 2018, 84, e01000-18. [Google Scholar] [CrossRef]
- Cottrell, M.T.; Kirchman, D.L. Community Composition of Marine Bacterioplankton Determined by 16S rRNA Gene Clone Libraries and Fluorescence In Situ Hybridization. Appl. Environ. Microbiol. 2000, 66, 5116–5122. [Google Scholar] [CrossRef] [PubMed]
- Peoples, M.B.; Craswell, E.T. Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture. Plant Soil 1992, 141, 13–39. [Google Scholar] [CrossRef]
- Lawson, L.A.; Atkinson, C.L.; Jackson, C.R. The gut bacterial microbiome of the Threeridge mussel, Amblema plicata, varies between rivers but shows a consistent core community. Freshw. Biol. 2022, 67, 1125–1136. [Google Scholar] [CrossRef]
- Palladino, G.; Rampelli, S.; Scicchitano, D.; Musella, M.; Quero, G.M.; Prada, F.; Mancuso, A.; Seyfarth, A.M.; Turroni, S.; Candela, M.; et al. Impact of Marine Aquaculture on the Microbiome Associated with Nearby Holobionts: The Case of Patella caerulea Living in Proximity of Sea Bream Aquaculture Cages. Microorganisms 2021, 9, 455. [Google Scholar] [CrossRef] [PubMed]
- Lachnit, T.; Meske, D.; Wahl, M.; Harder, T.; Schmitz, R. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ. Microbiol. 2011, 13, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Goecke, F.; Thiel, V.; Wiese, J.; Labes, A.; Imhoff, J.F. Algae as an important environment for bacteria—Phylogenetic relationships among new bacterial species isolated from algae. Phycologia 2013, 52, 14–24. [Google Scholar] [CrossRef]
- Sañudo-Wilhelmy, S.A.; Cutter, L.S.; Durazo, R.; Smail, E.A.; Gómez-Consarnau, L.; Webb, E.A.; Prokopenko, M.G.; Berelson, W.M.; Karl, D.M. Multiple B-vitamin depletion in large areas of the coastal ocean. Proc. Natl. Acad. Sci. USA 2012, 109, 14041–14045. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.-C.; Giovannoni, S.J. Cultivation and Growth Characteristics of a Diverse Group of Oligotrophic Marine Gammaproteobacteria. Appl. Environ. Microbiol. 2004, 70, 432–440. [Google Scholar] [CrossRef]
- Quaiser, A.; López-García, P.; Zivanovic, Y.; Henn, M.R.; Rodriguez-Valera, F.; Moreira, D. Comparative analysis of genome fragments of Acidobacteria from deep Mediterranean plankton. Environ. Microbiol. 2008, 10, 2704–2717. [Google Scholar] [CrossRef]
- Asplund, M.E.; Rehnstam-Holm, A.-S.; Atnur, V.; Raghunath, P.; Saravanan, V.; Härnström, K.; Collin, B.; Karunasagar, I.; Godhe, A. Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environ. Microbiol 2011, 13, 2738–2751. [Google Scholar] [CrossRef]
- Mancuso, F.P.; D’Hondt, S.; Willems, A.; Airoldi, L.; De Clerck, O. Diversity and Temporal Dynamics of the Epiphytic Bacterial Communities Associated with the Canopy-Forming Seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front. Microbiol. 2016, 7, 476. [Google Scholar] [CrossRef] [PubMed]
- Paix, B.; Vieira, C.; Potin, P.; Leblanc, C.; De Clerck, O.; Briand, J.-F.; Culioli, G. French Mediterranean and Atlantic populations of the brown algal genus Taonia (Dictyotales) display differences in phylogeny, surface metabolomes and epibacterial communities. Algal Res. 2021, 59, 102452. [Google Scholar] [CrossRef]
- Ismail, A.; Ktari, L.; Ahmed, M.; Bolhuis, H.; Boudabbous, A.; Stal, L.J.; Cretoiu, M.S.; El Bour, M. Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina pavonica. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Foubert, E.L.; Douglas, H.C. Studies on the Anaerobic Micrococci. J. Bacteriol. 1948, 56, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Pinckney, J.L. A mini-review of microbial consortia: Their roles in aquatic production and biogeochemical cycling. Microb. Ecol. 1996, 31, 225–247. [Google Scholar] [CrossRef] [PubMed]
- Vadeboncoeur, Y.; Moore, M.V.; Stewart, S.D.; Chandra, S.; Atkins, K.S.; Baron, J.S.; Bouma-Gregson, K.; Brothers, S.; Francoeur, S.N.; Genzoli, L.; et al. Blue Waters, Green Bottoms: Benthic Filamentous Algal Blooms Are an Emerging Threat to Clear Lakes Worldwide. BioScience 2021, 71, 1011–1027. [Google Scholar] [CrossRef]
- Biebl, H.; Allgaier, M.; Tindall, B.J.; Koblizek, M.; Lünsdorf, H.; Pukall, R.; Wagner-Döbler, I. 2005 Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int. J. Syst. Evol. Microbiol. 2005, 55, 1089–1096. [Google Scholar] [CrossRef]
- Paul, C.; Pohnert, G. Interactions of the Algicidal Bacterium Kordia algicida with Diatoms: Regulated Protease Excretion for Specific Algal Lysis. PLoS ONE 2011, 6, e21032. [Google Scholar] [CrossRef]
- Giri, D.D.; Singh, S.K.; Giri, A.; Dwivedi, H.; Kumar, A. Chapter 17—Bioremediation potential of methylotrophic bacteria. In Microbe Mediated Remediation of Environmental Contaminants; Kumar, A., Singh, V.K., Singh, P., Mishra, V.K., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2021; pp. 199–207. ISBN 978-0-12-821199-1. [Google Scholar]
- Martineau, C.; Villeneuve, C.; Mauffrey, F.; Villemur, R. Hyphomicrobiumnitrativorans sp. nov., isolated from the biofilm of a methanol-fed denitrification system treating seawater at the Montreal Biodome. Int. J. Syst. Evol. Microbiol. 2013, 2, 3777–3781. [Google Scholar] [CrossRef]
- Tsolcha, O.N.; Tekerlekopoulou, A.G.; Akratos, C.S.; Antonopoulou, G.; Aggelis, G.; Genitsaris, S.; Moustaka-Gouni, M.; Vayenas, D.V. A Leptolyngbya-based microbial consortium for agro-industrial wastewaters treatment and biodiesel production. Environ. Sci. Pollut. Res. 2018, 25, 17957–17966. [Google Scholar] [CrossRef]
- Myers, J.L.; Sekar, R.; Richardson, L.L. Molecular Detection and Ecological Significance of the Cyanobacterial Genera Geitlerinema and Leptolyngbya in Black Band Disease of Corals. Appl. Environ. Microbiol. 2007, 73, 5173–5182. [Google Scholar] [CrossRef] [PubMed]
- Mondeguer, F.; Lepinay, A.; Capiaux, H.; Turpin, V.; Baron, R.; Hess, P.; Lebeau, T. First metabolomic approach of the epiphytic bacteria-marine diatom Haslea ostrearia relationships. In Proceedings of the OCEANEXT, Interdisciplinary Conference, Nantes, France, 8–10 June 2016. [Google Scholar]
- Gabed, N.; Verret, F.; Peticca, A.; Kryvoruchko, I.; Gastineau, R.; Bosson, O.; Séveno, J.; Davidovich, O.; Davidovich, N.; Witkowski, A.; et al. What Was Old Is New Again: The Pennate Diatom Haslea ostrearia (Gaillon) Simonsen in the Multi-Omic Age. Mar. Drugs 2022, 20, 234. [Google Scholar] [CrossRef] [PubMed]
- Lépinay, A.; Capiaux, H.; Turpin, V.; Mondeguer, F.; Lebeau, T. Bacterial community structure of the marine diatom Haslea ostrearia. Algal Res. 2016, 16, 418–426. [Google Scholar] [CrossRef]
- Koedooder, C.; Stock, W.; Willems, A.; Mangelinckx, S.; De Troch, M.; Vyverman, W.; Sabbe, K. Diatom-Bacteria Interactions Modulate the Composition and Productivity of Benthic Diatom Biofilms. Front. Microbiol. 2019, 10, 1255. [Google Scholar] [CrossRef] [PubMed]
- Bohórquez, J.; McGenity, T.J.; Papaspyrou, S.; García-Robledo, E.; Corzo, A.; Underwood, G.J.C. Different Types of Diatom-Derived Extracellular Polymeric Substances Drive Changes in Heterotrophic Bacterial Communities from Intertidal Sediments. Front. Microbiol. 2017, 8, 245. [Google Scholar] [CrossRef]
- Larras, F.; Montuelle, B.; Bouchez, A. Assessment of Toxicity Thresholds in Aquatic Environments: Does Benthic Growth of Diatoms Affect Their Exposure and Sensitivity to Herbicides? Sci. Total Environ. 2013, 463–464, 469–477. [Google Scholar] [CrossRef]
- Allen, J.L.; Ten-Hage, L.; Leflaive, J. Allelopathic interactions involving benthic phototrophic microorganisms. Environ. Microbiol. Rep. 2016, 8, 752–762. [Google Scholar] [CrossRef]
- Sinkkonen, A. Ecological relationships and Allelopathy. In Allelopathy: A Physiological Process with Ecological Implications; Reigosa, M.J., Pedrol, N., González, L., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 373–393. ISBN 978-1-4020-4280-5. [Google Scholar]
Area | Year | Site | Substrate | |
---|---|---|---|---|
Diatom | Diatom | |||
Calvi Bay | 2019 | Port | Padina + Turf | |
Madrepore | Padina + Turf | |||
2021 | Port | Padina + Turf | Padina + Turf | |
Madrepore | Padina + Turf | |||
Oscellucia | Padina + Turf | Padina + Turf | ||
Croatian coast | 2020 | Šunj | Padina | |
Drvenik | Padina | |||
Stari Grad | Padina |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seveno, J.; Witkowski, A.; Car, A.; Gastineau, R.; Sirjacobs, D.; Leignel, V.; Mouget, J.-L. Impact of Blue Haslea spp. Blooms on Benthic Diatom and Bacterial Communities. Phycology 2024, 4, 465-507. https://doi.org/10.3390/phycology4030027
Seveno J, Witkowski A, Car A, Gastineau R, Sirjacobs D, Leignel V, Mouget J-L. Impact of Blue Haslea spp. Blooms on Benthic Diatom and Bacterial Communities. Phycology. 2024; 4(3):465-507. https://doi.org/10.3390/phycology4030027
Chicago/Turabian StyleSeveno, Julie, Andrzej Witkowski, Ana Car, Romain Gastineau, Damien Sirjacobs, Vincent Leignel, and Jean-Luc Mouget. 2024. "Impact of Blue Haslea spp. Blooms on Benthic Diatom and Bacterial Communities" Phycology 4, no. 3: 465-507. https://doi.org/10.3390/phycology4030027
APA StyleSeveno, J., Witkowski, A., Car, A., Gastineau, R., Sirjacobs, D., Leignel, V., & Mouget, J. -L. (2024). Impact of Blue Haslea spp. Blooms on Benthic Diatom and Bacterial Communities. Phycology, 4(3), 465-507. https://doi.org/10.3390/phycology4030027