Bioprospecting Microalgae: A Systematic Review of Current Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exploratory and Descriptive Research
2.2. Search Strategy
2.3. Bibliometric Analysis
- Scientific Annual Production: Analysis was conducted using default parameters across the overview, sources, authors, documents, conceptual structure, and social structure tools. Scientific Annual Production was graphed using Document Type information. Production was also contrasted by Country and Total Global Citation information.
- Analysis of sources: An analysis of sources was performed to understand trends and perspectives in the function of publications. Core sources by Bradford’s Law from Bibliometrix were executed to strengthen this analysis. WordCloud from Zygomatic was employed to complement this analysis graphically.
- The frequency of words across Title and Abstract information was determined to elucidate patterns and trends of topics and methods/processes, respectively. The term “microalgae” was removed for WordCloud graphs to clearly evidence trends. Complementary thematic maps were executed to determine the degree of relevance and development of knowledge about these topics. Both Keywords Plus and Author’s Keywords were also used for thematic maps. A list of terms to remove and synonyms were loaded to refine these analyses.
2.4. Focused Analysis on Relevant Applications
2.5. PRISMA Flow Diagram
2.6. Data Collection and Storage
3. Results and Discussion
3.1. General Search
- Scopus: 2990
- Web of Science (WoS): 85
- Lens: 208
- Microalgae, with a Cluster Frequency of 10.792, comprises simple/combined terms of specific microalgal biomass production studies for industrial applications such as biofuel, biodiesel, and bioremediation;
- Nonhuman, with a Cluster Frequency of 5.994, comprises simple/combined terms of biological composition studies for biotechnological applications such as metabolic and genetic engineering, biochemistry, and synthetic biology. Other terms associated with ecological relationships or consortia applications are included in this cluster;
- Human, with a Cluster Frequency of 2.996, comprises simple/combined terms of biological activity studies for biomedical or veterinary applications such as bioprospecting, antimicrobial and antioxidant activity, and drugs.
- Microalgae, with a Cluster Frequency of 2.509, comprises simple/combined terms of biotechnological applications of microalgae, such as bioenergy and bioremediation;
- Lipid, with a Cluster Frequency of 2.509, comprises simple/combined terms of bioprospecting studies such as bioactive compounds, metabolic engineering, and synthetic biology;
- Microorganisms and Seaweed have similar Cluster Frequencies of 134 and 130, respectively. These clusters comprise a few terms with low impact in this study.
- Potential, with a Cluster Frequency of 6.381, comprises simple terms of potential and bioprospecting application of microalgae;
- Microalgae, with a Cluster Frequency of 5.997, comprises simple terms of interested studies of perspective and trends and industrial processing application of microalgae and their production;
- Lipid, with a Cluster Frequency of 1.930, comprises simple terms of culture and growth systems for several purposes.
- Production, with a Cluster Frequency of 56.387, comprises simple or combined terms associated with methods and processes of the microorganisms’ bioproducts, with a broader focus on various applications and research areas.
- Microalgae, with a Cluster Frequency of 27.138, comprises simple or combined terms around the study of microalgae and their potential uses, particularly in producing biodiesel and other biofuels.
3.2. Specific Applications
3.2.1. Bioremediation: Biomass Production for Multipurpose Technologies Trend
3.2.2. Industrial and Medical Interest Biomolecules: Bioproduct Synthesis and Their Sustainable Production Trend
3.2.3. Biofuels: Microalgae Biorefinery for Combined Actions Trend
3.2.4. Food: Functional Food and Bioactive Compounds Trend
3.2.5. Carbon Fixation: Emerging Opportunity to Promote Sustainability Trend
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Graham, L.E.; Graham, J.M.; Wilcox, L.W. Algal Diversity and Relationships. In Algae; Benjamin Cummings: San Francisco, CA, USA, 2009; Volume 2, pp. 78–93. ISBN 978-0-321-55965-4. [Google Scholar]
- Graham, L.E.; Graham, J.M.; Wilcox, L.W. Introduction to the Algae. In Algae; Benjamin Cummings: San Francisco, CA, USA, 2009; Volume 2, pp. 1–17. ISBN 978-0-321-55965-4. [Google Scholar]
- Heimann, K.; Huerlimann, R. Chapter 3—Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In Handbook of Marine Microalgae; Kim, S.-K., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 25–41. ISBN 978-0-12-800776-1. [Google Scholar]
- Rodríguez-Zúñiga, D.; Méndez-Zavala, A.; Solís-Quiroz, O.; Morales-Oyervides, L.; Montañez-Saénz, J.C.; Benavente-Valdés, J.R. Chapter 1—Biology and Composition of Microalgae and Cyanobacteria. In Sustainable Industrial Processes Based on Microalgae; Lafarga, T., Acién, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–22. ISBN 978-0-443-19213-5. [Google Scholar]
- Silverberg, B.A. An Ultrastructural and Cytochemical Characterization of Microbodies in the Green Algae. Protoplasma 1975, 83, 269–295. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Montgomery, B.L. Determining Cell Shape: Adaptive Regulation of Cyanobacterial Cellular Differentiation and Morphology. Trends Microbiol. 2011, 19, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Begum, H.; Yusoff, F.M.; Banerjee, S.; Khatoon, H.; Shariff, M. Availability and Utilization of Pigments from Microalgae. Crit. Rev. Food Sci. Nutr. 2016, 56, 2209–2222. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, R.; Rizvi, A.; Pandit, S.; Desai, N.; Patil, R. Chapter 21—Microalgae: Classification, Bioactives, Medicinal Properties, Industrial Applications, and Future Prospectives. In An Integration of Phycoremediation Processes in Wastewater Treatment; Shah, M., Rodriguez-Couto, S., De La Cruz, C.B.V., Biswas, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 451–486. ISBN 978-0-12-823499-0. [Google Scholar]
- Odjadjare, E.C.; Mutanda, T.; Olaniran, A.O. Potential Biotechnological Application of Microalgae: A Critical Review. Crit. Rev. Biotechnol. 2017, 37, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.; Cordeiro, N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Mar. Drugs 2021, 19, 573. [Google Scholar] [CrossRef]
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the Potential of Microalgae for New Biotechnology Applications and beyond: A Review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar] [CrossRef]
- Singh, J.; Saxena, R.C. Chapter 2—An Introduction to Microalgae: Diversity and Significance. In Handbook of Marine Microalgae; Kim, S.-K., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 11–24. ISBN 978-0-12-800776-1. [Google Scholar]
- Ruiz, J.; Olivieri, G.; de Vree, J.; Bosma, R.; Willems, P.; Hans Reith, J.; Eppink, M.H.M.; Kleinegris, D.M.M.; Wijffels, R.H.; Barbosa, M.J. Towards Industrial Products from Microalgae. Energy Environ. Sci. 2016, 9, 3036–3043. [Google Scholar] [CrossRef]
- Calijuri, M.L.; Silva, T.A.; Magalhães, I.B.; de Paula Pereira, A.S.A.; Marangon, B.B.; de Assis, L.R.; Lorentz, J.F. Bioproducts from Microalgae Biomass: Technology, Sustainability, Challenges and Opportunities. Chemosphere 2022, 305, 135508. [Google Scholar] [CrossRef]
- Xu, L.; Weathers, P.J.; Xiong, X.-R.; Liu, C.-Z. Microalgal Bioreactors: Challenges and Opportunities. Eng. Life Sci. 2009, 9, 178–189. [Google Scholar] [CrossRef]
- Peter, A.P.; Koyande, A.K.; Chew, K.W.; Ho, S.-H.; Chen, W.-H.; Chang, J.-S.; Krishnamoorthy, R.; Banat, F.; Show, P.L. Continuous Cultivation of Microalgae in Photobioreactors as a Source of Renewable Energy: Current Status and Future Challenges. Renew. Sustain. Energy Rev. 2022, 154, 111852. [Google Scholar] [CrossRef]
- Lacroux, J.; Llamas, M.; Dauptain, K.; Avila, R.; Steyer, J.-P.; van Lis, R.; Trably, E. Dark Fermentation and Microalgae Cultivation Coupled Systems: Outlook and Challenges. Sci. Total Environ. 2023, 865, 161136. [Google Scholar] [CrossRef] [PubMed]
- Bauer, L.; Ranglová, K.; Masojídek, J.; Drosg, B.; Meixner, K. Digestate as Sustainable Nutrient Source for Microalgae—Challenges and Prospects. Appl. Sci. 2021, 11, 1056. [Google Scholar] [CrossRef]
- Novoveská, L.; Nielsen, S.L.; Eroldogan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Vasquez, M.; Einarsson, H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, Q. Cultivation of Microalgae in Food Processing Effluent for Pollution Attenuation and Astaxanthin Production: A Review of Technological Innovation and Downstream Application. Front. Bioeng. Biotechnol. 2024, 12, 1365514. [Google Scholar] [CrossRef] [PubMed]
- Ananthi, V.; Raja, R.; Carvalho, I.S.; Brindhadevi, K.; Pugazhendhi, A.; Arun, A. A Realistic Scenario on Microalgae Based Biodiesel Production: Third Generation Biofuel. Fuel 2021, 284, 118965. [Google Scholar] [CrossRef]
- Ganesan, R.; Manigandan, S.; Samuel, M.S.; Shanmuganathan, R.; Brindhadevi, K.; Lan Chi, N.T.; Duc, P.A.; Pugazhendhi, A. A Review on Prospective Production of Biofuel from Microalgae. Biotechnol. Rep. 2020, 27, e00509. [Google Scholar] [CrossRef]
- Khoo, K.S.; Ahmad, I.; Chew, K.W.; Iwamoto, K.; Bhatnagar, A.; Show, P.L. Enhanced Microalgal Lipid Production for Biofuel Using Different Strategies Including Genetic Modification of Microalgae: A Review. Prog. Energy Combust. Sci. 2023, 96, 101071. [Google Scholar] [CrossRef]
- Peng, L.; Fu, D.; Chu, H.; Wang, Z.; Qi, H. Biofuel Production from Microalgae: A Review. Environ. Chem. Lett. 2020, 18, 285–297. [Google Scholar] [CrossRef]
- Sathya, A.B.; Thirunavukkarasu, A.; Nithya, R.; Nandan, A.; Sakthishobana, K.; Kola, A.K.; Sivashankar, R.; Tuan, H.A.; Deepanraj, B. Microalgal Biofuel Production: Potential Challenges and Prospective Research. Fuel 2023, 332, 126199. [Google Scholar] [CrossRef]
- Devi, A.; Verma, M.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Mulla, S.I.; Bharagava, R.N. Microalgae: A Green Eco-Friendly Agents for Bioremediation of Tannery Wastewater with Simultaneous Production of Value-Added Products. Chemosphere 2023, 336, 139192. [Google Scholar] [CrossRef]
- Kashem, A.H.M.; Das, P.; AbdulQuadir, M.; Khan, S.; Thaher, M.I.; Alghasal, G.; Hawari, A.H.; Al-Jabri, H. Microalgal Bioremediation of Brackish Aquaculture Wastewater. Sci. Total Environ. 2023, 873, 162384. [Google Scholar] [CrossRef] [PubMed]
- Tambat, V.S.; Tseng, Y.; Kumar, P.; Chen, C.-W.; Singhania, R.R.; Chang, J.-S.; Dong, C.-D.; Patel, A.K. Effective and Sustainable Bioremediation of Molybdenum Pollutants from Wastewaters by Potential Microalgae. Environ. Technol. Innov. 2023, 30, 103091. [Google Scholar] [CrossRef]
- Zahra, S.A.; Ahmad, I.; Abdullah, N.; Iwamoto, K.; Yuzir, A. 9—Microalgae-Based Bioremediation of Pharmaceuticals Wastewater. In The Treatment of Pharmaceutical Wastewater; Khan, A.H., Khan, N.A., Naushad, M., Aziz, H.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 277–309. ISBN 978-0-323-99160-5. [Google Scholar]
- Maghzian, A.; Aslani, A.; Zahedi, R.; Yaghoubi, M. How to Effectively Produce Value-Added Products from Microalgae? Renew. Energy 2023, 204, 262–276. [Google Scholar] [CrossRef]
- Pradhan, N.; Kumar, S.; Selvasembian, R.; Rawat, S.; Gangwar, A.; Senthamizh, R.; Yuen, Y.K.; Luo, L.; Ayothiraman, S.; Saratale, G.D.; et al. Emerging Trends in the Pretreatment of Microalgal Biomass and Recovery of Value-Added Products: A Review. Bioresour. Technol. 2023, 369, 128395. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, H.; Sun, L.; Wang, Q. Converting Carbon Dioxide to High Value-Added Products: Microalgae-Based Green Biomanufacturing. GCB Bioenergy 2023, 15, 386–398. [Google Scholar] [CrossRef]
- A Holistic Approach to Circular Bioeconomy through the Sustainable Utilization of Microalgal Biomass for Biofuel and Other Value-Added Products|Microbial Ecology. Available online: https://link.springer.com/article/10.1007/s00248-024-02376-1 (accessed on 13 May 2024).
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-Based Wastewater Treatment for Nutrients Recovery: A Review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef]
- Kumari, D.; Singh, R. Pretreatment of Lignocellulosic Wastes for Biofuel Production: A Critical Review. Renew. Sustain. Energy Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- Katiyar, R.; Arora, A. Health Promoting Functional Lipids from Microalgae Pool: A Review. Algal Res. 2020, 46, 101800. [Google Scholar] [CrossRef]
- Bora, A.; Thondi Rajan, A.S.; Ponnuchamy, K.; Muthusamy, G.; Alagarsamy, A. Microalgae to Bioenergy Production: Recent Advances, Influencing Parameters, Utilization of Wastewater—A Critical Review. Sci. Total Environ. 2024, 946, 174230. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Scopus Preview—Scopus—Welcome to Scopus. Available online: https://www.scopus.com/ (accessed on 16 May 2024).
- Web of Science. Available online: https://access.clarivate.com/login?app=wos&alternative=true&shibShireURL=https:%2F%2Fwww.webofknowledge.com%2F%3Fauth%3DShibboleth&shibReturnURL=https:%2F%2Fwww.webofknowledge.com%2F&roaming=true (accessed on 16 May 2024).
- The Lens—Free & Open Patent and Scholarly Search. Available online: https://www.lens.org/lens (accessed on 16 May 2024).
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Chirivi-Salomon, J. Bibliometrix Files—Bioprospecting Microalgae: A Systematic Review of Current Trends 2024. Available online: https://zenodo.org/records/12715375 (accessed on 10 July 2024).
- Levin, S.A. Encyclopedia of Biodiversity; Academic Press: Cambridge, MA, USA, 2001; ISBN 978-0-12-226866-3. [Google Scholar]
- Singh, A.K. Technology Transfer and Commercialization Models and Policies in India, USA, China and Malaysia: A Conceptual Review. Asian J. Sociol. Res. 2020, 3, 19–45. [Google Scholar]
- Wehner, L. Roles and Actions of Leadership. In Regional Powers and Regional Orders; Routledge: Oxfordshire, UK, 2011; ISBN 978-0-203-81598-4. [Google Scholar]
- Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiol. Mol. Biol. Rev. 2007, 71, 295–347. [Google Scholar] [CrossRef] [PubMed]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Dual Role of Microalgae: Phycoremediation of Domestic Wastewater and Biomass Production for Sustainable Biofuels Production. Appl. Energy 2011, 88, 3411–3424. [Google Scholar] [CrossRef]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Biodiesel from Microalgae: A Critical Evaluation from Laboratory to Large Scale Production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd_Allah, E.F. Microalgae Metabolites: A Rich Source for Food and Medicine. Saudi J. Biol. Sci. 2019, 26, 709–722. [Google Scholar] [CrossRef]
- Razzak, S.A.; Hossain, M.M.; Lucky, R.A.; Bassi, A.S.; de Lasa, H. Integrated CO2 Capture, Wastewater Treatment and Biofuel Production by Microalgae Culturing—A Review. Renew. Sustain. Energy Rev. 2013, 27, 622–653. [Google Scholar] [CrossRef]
- Georgianna, D.R.; Mayfield, S.P. Exploiting Diversity and Synthetic Biology for the Production of Algal Biofuels. Nature 2012, 488, 329–335. [Google Scholar] [CrossRef]
- Günerken, E.; d’Hondt, E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H. Cell Disruption for Microalgae Biorefineries. Biotechnol. Adv. 2015, 33, 243–260. [Google Scholar] [CrossRef]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef]
- Luthra, S.; Kumar, S.; Garg, D.; Haleem, A. Barriers to Renewable/Sustainable Energy Technologies Adoption: Indian Perspective. Renew. Sustain. Energy Rev. 2015, 41, 762–776. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the Use of Insects in the Diet of Farmed Fish: Past and Future. Anim. Feed. Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Cuperlovic-Culf, M.; Culf, A.S.; Morin, P.J.; Touaibia, M. Application of Metabolomics in Drug Discovery, Development and Theranostics. Curr. Metabolomics 2013, 1, 41–57. [Google Scholar]
- Mccann, P.; Soete, L. Place-Based Innovation for Sustainability. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC121271 (accessed on 18 May 2024).
- Mamedov, G.; Babych, N. Green economy: Global development priorities. Balt. J. Econ. Stud. 2020, 6, 87–91. [Google Scholar] [CrossRef]
- Scherer, L.; Svenning, J.-C.; Huang, J.; Seymour, C.L.; Sandel, B.; Mueller, N.; Kummu, M.; Bekunda, M.; Bruelheide, H.; Hochman, Z.; et al. Global Priorities of Environmental Issues to Combat Food Insecurity and Biodiversity Loss. Sci. Total Environ. 2020, 730, 139096. [Google Scholar] [CrossRef]
- Nundy, S.; Kakar, A.; Bhutta, Z.A. How to Write an Abstract? In How to Practice Academic Medicine and Publish from Developing Countries? A Practical Guide; Nundy, S., Kakar, A., Bhutta, Z.A., Eds.; Springer Nature: Singapore, 2022; pp. 179–184. ISBN 9789811652486. [Google Scholar]
- Santana, M.; Cobo, M.J. What Is the Future of Work? A Science Mapping Analysis. Eur. Manag. J. 2020, 38, 846–862. [Google Scholar] [CrossRef]
- Bhatia, R.K.; Sakhuja, D.; Mundhe, S.; Walia, A. Renewable Energy Products through Bioremediation of Wastewater. Sustainability 2020, 12, 7501. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Sahoo, D.; Pandey, A. Bioremediation and Biofuel Production from Chlorella sp.: A Comprehensive Review. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Alam, M.d.A., Wang, Z., Eds.; Springer: Singapore, 2019; pp. 635–655. ISBN 9789811322648. [Google Scholar]
- Das, P.K.; Rani, J.; Rawat, S.; Kumar, S. Microalgal Co-Cultivation for Biofuel Production and Bioremediation: Current Status and Benefits. Bioenergy Res. 2022, 15, 1–26. [Google Scholar] [CrossRef]
- Nanda, M.; Chand, B.; Kharayat, S.; Bisht, T.; Nautiyal, N.; Deshwal, S.; Kumar, V. Integration of Microalgal Bioremediation and Biofuel Production: A ‘Clean up’ Strategy with Potential for Sustainable Energy Resources. Curr. Res. Green Sustain. Chem. 2021, 4, 100128. [Google Scholar] [CrossRef]
- Fang, W.-T.; Hsu, C.-H.; LePage, B. Bioremediation and Biofuel Production Using Microalgae. In Wetlands for Remediation in the Tropics: Wet Ecosystems for Nature-Based Solutions; Lobato de Magalhães, T., Otte, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 155–174. ISBN 978-3-031-23665-5. [Google Scholar]
- Andrade, L.M.; Tito, C.A.; Mascarenhas, C.; Lima, F.A.; Dias, M.; Andrade, C.J.; Mendes, M.A.; Nascimento, C.A.O. Phycoremediation of Copper by Chlorella Protothecoides (UTEX 256): Proteomics of Protein Biosynthesis and Stress Response. Biomass 2022, 2, 116–129. [Google Scholar] [CrossRef]
- Oberholster, P.J.; Schoeman, Y.; Botha, A.-M. Is Africa Ready to Use Phycoremediation to Treat Domestic Wastewater as an Alternative Natural Base Solution? A Case Study. Phycology 2024, 4, 153–167. [Google Scholar] [CrossRef]
- Almeida, A.; Cotas, J.; Pereira, L.; Carvalho, P. Potential Role of Spirogyra sp. and Chlorella sp. in Bioremediation of Mine Drainage: A Review. Phycology 2023, 3, 186–201. [Google Scholar] [CrossRef]
- Mobin, S.M.A.; Chowdhury, H.; Alam, F. Commercially Important Bioproducts from Microalgae and Their Current Applications—A Review. Energy Procedia 2019, 160, 752–760. [Google Scholar] [CrossRef]
- Mutanda, T.; Naidoo, D.; Bwapwa, J.K.; Anandraj, A. Biotechnological Applications of Microalgal Oleaginous Compounds: Current Trends on Microalgal Bioprocessing of Products. Front. Energy Res. 2020, 8, 598803. [Google Scholar] [CrossRef]
- Tang, D.Y.Y.; Khoo, K.S.; Chew, K.W.; Tao, Y.; Ho, S.-H.; Show, P.L. Potential Utilization of Bioproducts from Microalgae for the Quality Enhancement of Natural Products. Bioresour. Technol. 2020, 304, 122997. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.; Rodriguez, C.; Yaseen, M. High-Value Biochemical Products & Applications of Freshwater Eukaryotic Microalgae. Sci. Total Environ. 2022, 809, 151111. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Suresh, S.; Kanwal, S.; Ramadoss, G.; Ramprakash, B.; Incharoensakdi, A. Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int. J. Mol. Sci. 2022, 23, 2623. [Google Scholar] [CrossRef]
- Silva, M.; Kamberovic, F.; Uota, S.T.; Kovan, I.-M.; Viegas, C.S.B.; Simes, D.C.; Gangadhar, K.N.; Varela, J.; Barreira, L. Microalgae as Potential Sources of Bioactive Compounds for Functional Foods and Pharmaceuticals. Appl. Sci. 2022, 12, 5877. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dunford, N.T. Algae: Nature’s Renewable Resource for Fuels and Chemicals. Biomass 2024, 4, 329–348. [Google Scholar] [CrossRef]
- Sodré da Silva, C.A.; Marimón Sibaja, K.V.; de Ramos Cizilio, S.; Miranda Junior, J.R.; de Castro Santana, R.; Martins, M.A.; de Oliveira Leite, M.; Basilio de Oliveira, E.; dos Reis Coimbra, J.S. Evaluation of Cell Rupture Techniques for the Extraction of Proteins from the Microalgae Tetradesmus Obliquus. Phycology 2024, 4, 87–103. [Google Scholar] [CrossRef]
- Narayanan, S.; Pilli, S.R. Algal-Derived Pharmaceuticals: Antimicrobial, Antiviral, Antifungal, Neuroprotective Products, Therapeutic Proteins and Drugs. In Algal Biorefinery; Routledge: Oxfordshire, UK, 2021; ISBN 978-1-00-310031-7. [Google Scholar]
- Zhou, L.; Li, K.; Duan, X.; Hill, D.; Barrow, C.; Dunshea, F.; Martin, G.; Suleria, H. Bioactive Compounds in Microalgae and Their Potential Health Benefits. Food Biosci. 2022, 49, 101932. [Google Scholar] [CrossRef]
- Orejuela-Escobar, L.; Gualle, A.; Ochoa-Herrera, V.; Philippidis, G.P. Prospects of Microalgae for Biomaterial Production and Environmental Applications at Biorefineries. Sustainability 2021, 13, 3063. [Google Scholar] [CrossRef]
- Roy Chong, J.W.; Tan, X.; Khoo, K.S.; Ng, H.S.; Jonglertjunya, W.; Yew, G.Y.; Show, P.L. Microalgae-Based Bioplastics: Future Solution towards Mitigation of Plastic Wastes. Environ. Res. 2022, 206, 112620. [Google Scholar] [CrossRef] [PubMed]
- Parmar, P.; Kumar, R.; Neha, Y.; Srivatsan, V. Microalgae as next Generation Plant Growth Additives: Functions, Applications, Challenges and Circular Bioeconomy Based Solutions. Front. Plant Sci. 2023, 14, 1073546. [Google Scholar] [CrossRef]
- Loke Show, P. Global Market and Economic Analysis of Microalgae Technology: Status and Perspectives. Bioresour. Technol. 2022, 357, 127329. [Google Scholar] [CrossRef]
- Borowitzka, M.A. High-Value Products from Microalgae—Their Development and Commercialisation. J. Appl. Phycol. 2013, 25, 743–756. [Google Scholar] [CrossRef]
- Siddiki, S.Y.A.; Mofijur, M.; Kumar, P.S.; Ahmed, S.F.; Inayat, A.; Kusumo, F.; Badruddin, I.A.; Khan, T.M.Y.; Nghiem, L.D.; Ong, H.C.; et al. Microalgae Biomass as a Sustainable Source for Biofuel, Biochemical and Biobased Value-Added Products: An Integrated Biorefinery Concept. Fuel 2022, 307, 121782. [Google Scholar] [CrossRef]
- Casanova, L.M.; Mendes, L.B.B.; Corrêa, T.d.S.; da Silva, R.B.; Joao, R.R.; Macrae, A.; Vermelho, A.B. Development of Microalgae Biodiesel: Current Status and Perspectives. Microorganisms 2023, 11, 34. [Google Scholar] [CrossRef]
- Chhandama, M.V.L.; Satyan, K.B.; Changmai, B.; Vanlalveni, C.; Rokhum, S.L. Microalgae as a Feedstock for the Production of Biodiesel: A Review. Bioresour. Technol. Rep. 2021, 15, 100771. [Google Scholar] [CrossRef]
- Benasla, A.; Hausler, R. A Two-Step Cultivation Strategy for High Biomass Production and Lipid Accumulation of Raphidocelis Subcapitata Immobilized in Alginate Gel. Biomass 2021, 1, 94–104. [Google Scholar] [CrossRef]
- Karageorgou, D.; Sainis, I.; Touka, A.; Vareli, K.; Stamatis, H.; Katapodis, P. Biomass and β-Glucosidase Production by the Cyanobacterium Pseudanabaena sp. under Heterotrophic Conditions. Biomass 2022, 2, 299–315. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Świca, I.; Kazimierowicz, J. Algae Biomass as a Potential Source of Liquid Fuels. Phycology 2021, 1, 105–118. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Biodiesel from Microalgae Beats Bioethanol. Trends Biotechnol. 2008, 26, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Dhar, D.W. Microalgae as Second Generation Biofuel. A Review. Agron. Sustain. Dev. 2011, 31, 605–629. [Google Scholar] [CrossRef]
- Ampofo, J. Abbey, Lord Microalgae: Bioactive Composition, Health Benefits, Safety and Prospects as Potential High-Value Ingredients for the Functional Food Industry. Foods 2022, 11, 1744. [Google Scholar] [CrossRef]
- Lucakova, S.; Branyikova, I.; Hayes, M. Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. Appl. Sci. 2022, 12, 4402. [Google Scholar] [CrossRef]
- Torres-Tiji, Y.; Fields, F.J.; Mayfield, S.P. Microalgae as a Future Food Source. Biotechnol. Adv. 2020, 41, 107536. [Google Scholar] [CrossRef]
- Severo, I.A.; de Lira, G.S.; Ambati, R.R.; Gokare, R.A.; Vargas, J.V.C.; Ordonez, J.; Mariano, A.B. Disruptive Potential of Microalgae Proteins: Shaping the Future of the Food Industry. Future Foods 2024, 9, 100318. [Google Scholar] [CrossRef]
- Muthukrishnan, L. Bio-Engineering of Microalgae: Challenges and Future Prospects toward Industrial and Environmental Applications. J. Basic Microbiol. 2022, 62, 310–329. [Google Scholar] [CrossRef]
- Kang, K.; Papari, S.; Bamdad, H.; Nanda, S.; Dalai, A.K.; Berruti, F. Algae as a Bioresource for Clean Fuels, Carbon Fixation and Wastewater Reclamation. In Algal Biorefinery; Routledge: Oxfordshire, UK, 2021; ISBN 978-1-00-310031-7. [Google Scholar]
- Zahed, M.A.; Movahed, E.; Khodayari, A.; Zanganeh, S.; Badamaki, M. Biotechnology for Carbon Capture and Fixation: Critical Review and Future Directions. J. Environ. Manag. 2021, 293, 112830. [Google Scholar] [CrossRef] [PubMed]
- Dahai, H.; Zhihong, Y.; Lin, Q.; Yuhong, L.; Lei, T.; Jiang, L.; Liandong, Z. The Application of Magical Microalgae in Carbon Sequestration and Emission Reduction: Removal Mechanisms and Potential Analysis. Renew. Sustain. Energy Rev. 2024, 197, 114417. [Google Scholar] [CrossRef]
Application | Search Equations |
---|---|
Bioremediation | All(bioremediation OR “waste water” OR wastewater OR biodegradation) |
Industrial and Medical Interest Biomolecules | All(biomolecules OR drugs) |
Biofuels | All(biofuel OR biodiesel OR energy OR bioenergy) |
Food | All(food OR protein) |
Carbon Fixation 1 | All((carbon OR CO2 OR “carbon dioxide”) AND (fixing OR fixation OR absorption OR sequestration OR capture OR assimilation OR reduction OR incorporation)) |
Source | Platform Publisher | SP | CS | H | G | M | TC | NP | PY |
---|---|---|---|---|---|---|---|---|---|
Algal Research | ScienceDirect: ELSEVIER | SP. | 1 | 38 | 61 | 2.923 | 4420 | 140 | 2012 |
Bioresource Technology | ScienceDirect: ELSEVIER | NSP. | 2 | 51 | 87 | 3.643 | 8196 | 140 | 2011 |
Marine Drugs | MDPI | NSP. | 3 | 24 | 50 | 2 | 2563 | 77 | 2013 |
Journal of Applied Phycology | Springer Link | SP. | 4 | 20 | 30 | 1.667 | 1037 | 57 | 2013 |
Renewable And Sustainable Energy Reviews | ScienceDirect: ELSEVIER | NSP. | 5 | 30 | 37 | 2.5 | 4714 | 37 | 2013 |
Molecules | MDPI | NSP. | 6 | 15 | 30 | 1.875 | 917 | 36 | 2017 |
Science of The Total Environment | ScienceDirect: ELSEVIER | NSP. | 7 | 17 | 33 | 2.429 | 1127 | 33 | 2018 |
Biomass Conversion and Biorefinery | Springer Link | NSP. | 8 | 7 | 9 | 2.333 | 127 | 32 | 2022 |
Frontiers in Microbiology | Frontiers | NSP. | 9 | 9 | 24 | 1 | 599 | 26 | 2016 |
Microorganisms | MDPI | NSP. | 10 | 9 | 20 | 1 | 433 | 25 | 2016 |
Bioenergy Research | Springer Link | NSP. | 11 | 11 | 23 | 0.917 | 655 | 23 | 2013 |
Bioresource Technology Reports | ScienceDirect: ELSEVIER | NSP. | 12 | 9 | 13 | 1.5 | 187 | 23 | 2019 |
Chemosphere | ScienceDirect: ELSEVIER | NSP. | 13 | 12 | 22 | 2.4 | 637 | 22 | 2020 |
Scientific Reports | Nature | NSP. | 14 | 10 | 16 | 1 | 283 | 22 | 2015 |
Biotechnology Advances | ScienceDirect: ELSEVIER | NSP. | 15 | 15 | 21 | 1.5 | 1650 | 21 | 2015 |
Environmental Science and Pollution Research | Springer Link | NSP. | 16 | 10 | 20 | 1 | 428 | 21 | 2015 |
Renewable Energy | ScienceDirect: ELSEVIER | NSP. | 17 | 13 | 21 | 1.083 | 834 | 21 | 2013 |
Journal of Cleaner Production | ScienceDirect: ELSEVIER | NSP. | 18 | 14 | 20 | 2 | 1095 | 20 | 2018 |
Applied Sciences (Switzerland) | MDPI | NSP. | 19 | 9 | 16 | 1.5 | 266 | 19 | 2019 |
Fuel | ScienceDirect: ELSEVIER | NSP. | 20 | 9 | 19 | 1.5 | 440 | 19 | 2019 |
Applied Biochemistry and Biotechnology | Springer Link | NSP. | 21 | 11 | 18 | 0.846 | 499 | 18 | 2012 |
Biomass And Bioenergy | ScienceDirect: ELSEVIER | NSP. | 22 | 13 | 18 | 1.083 | 457 | 18 | 2013 |
Foods | MDPI | NSP. | 23 | 8 | 14 | 1.6 | 211 | 18 | 2020 |
Biocatalysis and Agricultural Biotechnology | ScienceDirect: ELSEVIER | NSP. | 24 | 7 | 17 | 0.583 | 307 | 17 | 2013 |
International Journal of Hydrogen Energy | ScienceDirect: ELSEVIER | NSP. | 25 | 11 | 17 | 1.222 | 320 | 17 | 2016 |
Journal of Chemical Technology and Biotechnology | Wiley | NSP. | 26 | 8 | 14 | 0.615 | 218 | 17 | 2012 |
3 Biotech | Springer Link | NSP. | 27 | 7 | 14 | 0.7 | 196 | 16 | 2015 |
Critical Reviews in Biotechnology | Taylor & Francis Online | NSP. | 28 | 11 | 16 | 0.917 | 671 | 16 | 2013 |
Energies | MDPI | NSP. | 29 | 10 | 16 | 0.769 | 505 | 16 | 2012 |
International Journal of Molecular Sciences | MDPI | NSP. | 30 | 8 | 16 | 0.8 | 433 | 16 | 2015 |
Country | NP | TC |
---|---|---|
India | 706 | 10,363 |
China | 319 | 9085 |
USA | 198 | 7564 |
Brazil | 153 | 3153 |
Portugal | 108 | 2059 |
Italy | 89 | 1615 |
Malaysia | 75 | 2002 |
Canada | 74 | 2582 |
South Korea | 74 | 2144 |
France | 65 | 1897 |
Paper | Source | TC | TC per Year | Norm. TC |
---|---|---|---|---|
Taylor et al., 2007 [47] | Microbiology and Molecular Biology Reviews | 1083 | 60.17 | 2.52 |
Rawat et al., 2011 [48] | Applied Energy | 876 | 62.57 | 7.09 |
Rawat et al., 2013 [49] | Applied Energy | 750 | 62.50 | 8.86 |
Georgianna and Mayfield, 2012 [52] | Nature | 588 | 45.23 | 6.64 |
Günerken et al., 2015 [53] | Biotechnology Advances | 527 | 52.70 | 7.44 |
Sathasivam et al., 2019 [50] | Saudi Journal of Biological Sciences | 499 | 83.17 | 14.86 |
Kumari and Singh, 2018 [35] | Renewable and Sustainable Energy Reviews | 485 | 69.29 | 11.12 |
Razzak et al., 2013 [51] | Renewable and Sustainable Energy Reviews | 474 | 39.50 | 5.60 |
Li et al., 2019 [34] | Bioresource Technology | 421 | 70.17 | 12.54 |
Martins et al., 2013 [54] 1 | Marine Drugs | 395 | 35.91 | 7.51 |
Microalgae | Nonhuman | Human | |||
---|---|---|---|---|---|
Term | Occurrence | Term | Occurrence | Term | Occurrence |
microalgae | 946 | nonhuman | 742 | human | 268 |
biomass | 602 | metabolism | 378 | animal | 145 |
biofuel | 427 | biotechnology | 226 | antioxidant | 126 |
lipid | 332 | bacteria | 220 | unclassified drug | 183 |
microorganisms | 536 | controlled study | 242 | bioproducts | 96 |
wastewater | 215 | chemistry | 238 | seaweed | 68 |
fatty acid | 264 | cyanobacteria | 127 | polysaccharide | 72 |
chlorella spp | 217 | carotenoids | 131 | biodiversity | 77 |
biodiesel | 269 | fungi | 97 | astaxanthin | 72 |
nitrogen | 161 | diatom | 77 | antioxidant activity | 89 |
Microalgae | Lipid | Microorganisms | Seaweed | ||||
---|---|---|---|---|---|---|---|
Term | Occurrence | Term | Occurrence | Term | Occurrence | Term | Occurrence |
microalgae | 775 | lipid | 152 | microorganisms | 53 | seaweed | 49 |
biofuel | 260 | cyanobacteria | 107 | enzymes | 21 | bioactivity | 23 |
biodiesel | 198 | fatty acid | 106 | heavy metals | 21 | lipidomics | 22 |
biomass | 125 | carotenoids | 89 | phytoremediation | 21 | glycolipids | 18 |
wastewater | 97 | antioxidant | 81 | biodegradation | 18 | phospholipids | 18 |
biorefinery | 90 | bioactive compounds | 69 | metagenomics | 14 | mass spectrometry | 14 |
bioremediation | 79 | bioprospecting | 69 | nanoparticles | 14 | ||
wastewater treatment | 79 | diatom | 68 | toxicity | 14 | ||
chlorella spp | 73 | pigments | 54 | ||||
sustainability | 55 | astaxanthin | 53 |
Potential | Microalgae | Lipid | |||
---|---|---|---|---|---|
Term | Occurrence | Term | Occurrence | Term | Occurrence |
potential | 281 | microalgae | 1088 | lipid | 242 |
microorganisms | 254 | production | 686 | growth | 139 |
marine | 249 | biomass | 265 | cultivation | 132 |
applications | 156 | wastewater | 247 | chlorella spp | 121 |
acids | 142 | biofuel | 218 | effects | 117 |
compounds | 129 | sustainable | 180 | nutrients | 95 |
source | 130 | biodiesel | 169 | removal | 81 |
fatty | 120 | treatment | 117 | enhancement | 69 |
bioprospecting | 122 | industrial | 108 | culture | 53 |
bioactive | 113 | future | 95 | optimization | 52 |
Production | Microalgae | ||
---|---|---|---|
Term | Occurrence | Term | Occurrence |
production | 1573 | microalgae | 1679 |
potential | 1267 | biomass | 1066 |
microorganisms | 740 | lipid | 800 |
source | 976 | acids | 789 |
industrial | 868 | growth | 999 |
compounds | 721 | strain | 690 |
biofuel | 613 | wastewater | 457 |
environment | 825 | cell | 630 |
process | 764 | fatty | 566 |
species | 655 | biodiesel | 415 |
Database | Bioremediation | Industrial and Medical Interest Biomolecules | Biofuels | Food | Carbon Fixation |
---|---|---|---|---|---|
Scopus | 1878 | 1715 | 2487 | 2651 | 1386 |
Web of Science (WoS) | 17 | 11 | 53 | 36 | 8 |
Lens | 62 | 62 | 135 | 150 | 70 |
Final Data 1 | 1887 | 1724 | 2534 | 2543 | 1415 |
Microalgae | Lipid | Microorganisms | Marine | ||||
---|---|---|---|---|---|---|---|
Term | Occurrence | Term | Occurrence | Term | Occurrence | Term | Occurrence |
microalgae | 835 | lipid | 158 | microorganisms | 165 | marine | 88 |
production | 529 | cultivation | 114 | sustainable | 148 | applications | 87 |
wastewater | 250 | growth | 109 | environment | 74 | application | 56 |
biomass | 226 | chlorella spp | 106 | challenges | 70 | compounds | 56 |
biofuel | 177 | nutrients | 90 | bioremediation | 69 | bacteria | 50 |
potential | 173 | removal | 80 | perspective | 69 | biotechnological | 46 |
biodiesel | 137 | acids | 73 | recent | 69 | bioactive | 40 |
treatment | 116 | effects | 76 | future | 59 | fungi | 37 |
industrial | 74 | strain | 72 | technology | 57 | biotechnology | 35 |
source | 75 | fatty | 64 | current | 51 | natural | 35 |
green | 70 | diatom | 56 | advances | 46 | extraction | 29 |
bioprospecting | 69 | enhancement | 50 | approaches | 43 | synthesis | 28 |
waste | 66 | isolated | 48 | resource | 39 | pigments | 27 |
biorefinery | 63 | characterization | 46 | prospects | 38 | diversity | 24 |
products | 61 | effluent | 42 | trends | 36 | exploring | 23 |
process | 48 | vulgaris | 43 | remediation | 33 | health | 22 |
approach | 48 | species | 39 | emerging | 30 | nanoparticles | 19 |
energy | 45 | municipal | 39 | engineering | 26 | yeast | 17 |
cyanobacteria | 45 | conditions | 36 | enzymes | 26 | functional | 15 |
system | 43 | culture | 36 | heavy | 26 | seaweed | 14 |
Microalgae | Production | Marine | |||
---|---|---|---|---|---|
Term | Occurrence | Term | Occurrence | Term | Occurrence |
microalgae | 534 | production | 289 | marine | 219 |
lipid | 111 | microorganisms | 178 | potential | 180 |
activity | 98 | sustainable | 107 | applications | 127 |
acids | 87 | biomass | 104 | compounds | 118 |
bioprospecting | 90 | products | 90 | bioactive | 105 |
antioxidant | 84 | industrial | 71 | source | 89 |
diatom | 78 | perspective | 67 | natural | 86 |
fatty | 74 | wastewater | 64 | pigments | 69 |
growth | 58 | biofuel | 63 | food | 65 |
effects | 57 | future | 61 | biotechnological | 58 |
cell | 48 | recent | 57 | metabolites | 56 |
extraction | 52 | challenges | 55 | bacteria | 54 |
green | 53 | cultivation | 53 | plant | 51 |
application | 53 | current | 54 | fungi | 48 |
carotenoids | 49 | environment | 48 | health | 36 |
characterization | 49 | biotechnology | 47 | diversity | 30 |
strain | 48 | advances | 42 | synthetic | 24 |
cyanobacteria | 46 | biorefinery | 42 | functional | 23 |
seaweed | 45 | engineering | 41 | therapeutic | 23 |
isolated | 39 | development | 39 | discovery | 22 |
Microalgae | Lipid | Microorganisms | Potential | ||||
---|---|---|---|---|---|---|---|
Term | Occurrence | Term | Occurrence | Term | Occurrence | Term | Occurrence |
microalgae | 1056 | lipid | 236 | microorganisms | 188 | potential | 236 |
production | 674 | acids | 136 | sustainable | 173 | marine | 163 |
biomass | 263 | cultivation | 129 | industrial | 97 | applications | 139 |
wastewater | 251 | growth | 130 | perspective | 89 | source | 105 |
biofuel | 223 | chlorella spp | 121 | challenges | 87 | bioprospecting | 101 |
biodiesel | 173 | fatty | 116 | future | 86 | compounds | 86 |
treatment | 117 | strain | 97 | recent | 79 | bioactive | 73 |
green | 87 | effects | 98 | products | 75 | application | 68 |
waste | 76 | nutrients | 96 | technology | 71 | extraction | 66 |
biorefinery | 73 | characterization | 86 | environment | 70 | cyanobacteria | 66 |
analysis | 59 | diatom | 81 | current | 65 | food | 65 |
cell | 58 | removal | 77 | bioremediation | 60 | biotechnological | 59 |
plant | 57 | isolated | 64 | development | 58 | natural | 55 |
approach | 57 | enhancement | 63 | advances | 54 | bacteria | 51 |
process | 55 | activity | 61 | biotechnology | 54 | pigments | 49 |
energy | 54 | antioxidant | 56 | engineering | 51 | metabolites | 43 |
system | 52 | species | 53 | approaches | 50 | synthesis | 39 |
feedstock | 44 | accumulation | 47 | fungi | 48 | diversity | 37 |
metabolic | 44 | vulgaris | 47 | prospects | 50 | biological | 34 |
stress | 44 | conditions | 46 | resource | 44 | seaweed | 34 |
Microalgae | Production | Lipid | Growth | ||||
---|---|---|---|---|---|---|---|
Term | Occurrence | Term | Occurrence | Term | Occurrence | Term | Occurrence |
microalgae | 882 | production | 561 | lipid | 179 | growth | 112 |
potential | 253 | biomass | 230 | acids | 123 | cultivation | 98 |
microorganisms | 229 | wastewater | 181 | fatty | 105 | chlorella spp | 92 |
marine | 208 | biofuel | 165 | activity | 104 | nutrients | 70 |
applications | 150 | sustainable | 159 | antioxidant | 91 | enhancement | 57 |
compounds | 119 | biodiesel | 111 | effects | 91 | removal | 55 |
source | 115 | perspective | 93 | diatom | 82 | enhanced | 44 |
bioactive | 106 | future | 89 | characterization | 81 | culture | 41 |
bioprospecting | 105 | challenges | 84 | strain | 76 | conditions | 41 |
products | 100 | treatment | 84 | isolated | 61 | assessment | 39 |
natural | 96 | recent | 82 | carotenoids | 59 | vulgaris | 39 |
industrial | 93 | current | 71 | evaluation | 48 | accumulation | 32 |
food | 83 | environment | 69 | species | 47 | freshwater | 32 |
pigments | 79 | biorefinery | 68 | composition | 46 | effluent | 27 |
green | 76 | waste | 66 | optimization | 40 | anaerobic | 27 |
extraction | 72 | technology | 62 | properties | 40 | nitrogen | 26 |
cyanobacteria | 71 | advances | 58 | stress | 40 | productivity | 25 |
cell | 65 | approach | 53 | chemical | 39 | native | 24 |
application | 68 | bioremediation | 52 | screening | 38 | efficient | 22 |
fungi | 65 | process | 50 | antimicrobial | 33 | light | 22 |
Microalgae | Wastewater | ||
---|---|---|---|
Term | Occurrence | Term | Occurrence |
microalgae | 625 | wastewater | 165 |
production | 385 | biomass | 164 |
biofuel | 153 | lipid | 104 |
microorganisms | 117 | biodiesel | 101 |
potential | 116 | cultivation | 85 |
sustainable | 114 | treatment | 81 |
applications | 85 | growth | 68 |
challenges | 65 | chlorella spp | 62 |
marine | 64 | acids | 58 |
perspective | 62 | nutrients | 55 |
source | 59 | green | 54 |
industrial | 58 | fatty | 52 |
recent | 58 | removal | 49 |
biorefinery | 52 | plant | 40 |
future | 50 | effects | 41 |
products | 49 | strain | 39 |
waste | 45 | characterization | 36 |
diatom | 44 | process | 35 |
bioprospecting | 42 | system | 36 |
technology | 42 | carbon | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiriví-Salomón, J.S.; García-Huérfano, S.; Giraldo, I.A. Bioprospecting Microalgae: A Systematic Review of Current Trends. Phycology 2024, 4, 508-532. https://doi.org/10.3390/phycology4030028
Chiriví-Salomón JS, García-Huérfano S, Giraldo IA. Bioprospecting Microalgae: A Systematic Review of Current Trends. Phycology. 2024; 4(3):508-532. https://doi.org/10.3390/phycology4030028
Chicago/Turabian StyleChiriví-Salomón, Juan S., Steven García-Huérfano, and Ivan A. Giraldo. 2024. "Bioprospecting Microalgae: A Systematic Review of Current Trends" Phycology 4, no. 3: 508-532. https://doi.org/10.3390/phycology4030028
APA StyleChiriví-Salomón, J. S., García-Huérfano, S., & Giraldo, I. A. (2024). Bioprospecting Microalgae: A Systematic Review of Current Trends. Phycology, 4(3), 508-532. https://doi.org/10.3390/phycology4030028