Characterization of Potential Pollutants from Poly(lactic acid) after the Degradation Process in Soil under Simulated Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Biodegradation and Sample Collection
2.3. Recommended Analytical Procedure
2.3.1. Preparation of Soil Extracts
- (a)
- extraction in an ultrasonic bath for 1 h (temperature ~30 °C)—this type of extraction is becoming more and more popular among researchers around the world, it allows to significantly shorten the time of sample preparation with high recoveries at the same time;
- (b)
- cold extraction—a sample placed in a solvent for 24 h (temperature ~23 °C).
2.3.2. GC/MS and Py-GC/MS Analysis
- (1)
- GC/MS Analysis
- (2)
- Py-GC/MS Analysis
2.3.3. Molar Mass Distribution and Polydispersity
2.3.4. Fourier Transform Infrared Spectroscopy
3. Results and Discussion
3.1. Soil Analysis after Solvent Extraction
3.1.1. GC/MS Analysis
3.1.2. GPC/SEC Analysis
3.1.3. FTIR-Analysis
3.2. Py-GC/MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Parliament. Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment (Text with EEA relevance). Off. J. Eur. Union 2019, 155, 1–9. [Google Scholar]
- Behuria, P. The Comparative Political Economy of Plastic Bag Bans in East Africa: Why Implementation Has Varied in Rwanda, Kenya and Uganda; GDI Working Paper; The University of Manchester: Manchester, UK, 2019; Volume 37, ISBN 978-1-909336-72-8. [Google Scholar]
- UN Environment Programme. Available online: https://www.unep.org/news-and-stories/story/kenya-bans-single-use-plastics-protected-areas (accessed on 1 January 2021).
- Raschip, I.E.; Fifere, N.; Varganici, C.-D.; Dinu, M.V. Development of antioxidant and antimicrobial xanthan-based cryogels with tuned porous morphology and controlled swelling features. Int. J. Biol. Macromol. 2020, 156, 608. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.k. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Pinato, L.; Bonifacio, M.A.; De Giglio, E.; Santovito, E.; Cometa, S.; Bevilacqua, A.; Baruzzi, F. Biopolymer hybrid materials: Development, characterization, and food packaging applications. Food Packag. Shelf Life 2021, 28, 100676. [Google Scholar] [CrossRef]
- Liu, Y.; Ahmed, S.; Sameen, D.E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci. Technol. 2021, 112, 532. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Seshadri, S.A.; Devnani, G.L.; Sanjay, M.R.; Siengchin, S.; Maran, J.P.; Anuf, A.R. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—A comprehensive review. J. Clean. Prod. 2021, 310, 127483. [Google Scholar] [CrossRef]
- Shankara, S.; Wangb, L.-F.; Rhima, J.W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. Mater. Sci. Eng. C 2018, 93, 289. [Google Scholar] [CrossRef]
- Liu, Y.F.; Jiang, S.Y.; Yan, W.; He, M.; Qin, J.; Qin, S.H.; Yu, J. Crystallization Morphology Regulation on Enhancing Heat Resistance of Polylactic Acid. Polymers 2020, 12, 1563. [Google Scholar] [CrossRef]
- Delgado-Aguilar, M.; Puig, R.; Sazdovski, I.; Fullana-I-Palmer, P. Polylactic Acid/Polycaprolactone Blends: On the Path to Circular Economy, Substituting Single-Use Commodity Plastic Products. Materials 2020, 13, 2655. [Google Scholar] [CrossRef]
- Vanaei, H.; Shirinbayan, M.; Deligant, M.; Raissi, K.; Fitoussi, J.; Khelladi, S.; Tcharkhtchi, A. Influence of process parameters on thermal and mechanical properties of polylactic acid fabricated by fused filament fabrication. Polym. Eng. Sci. 2020, 60, 8. [Google Scholar] [CrossRef]
- Marczak, D.; Lejcuś, K.; Misiewicz, J. Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. J. Clean. Prod. 2020, 268, 20. [Google Scholar] [CrossRef]
- Rocha, D.B.; Souza de Carvalho, J.; Aparecida de Oliveira, S.; Santos Rosa, D. A new approach for flexible PBAT/PLA/CaCO3 films into agriculture. J. Appl. Polym. Sci. 2018, 135, 46660. [Google Scholar] [CrossRef]
- Lunt, J.; Shafer, A.L. Polylactic Acid Polymers from Com. Applications in the Textiles Industry. J. Ind. Text. 2000, 29, 3, 191. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Jaafar, M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 2020, 60, 2061. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Richert, J. Synteza, właściwości i zastosowanie polilaktydu. Przetwórstwo Tworzyw 2009, 5, 192. (In Polish) [Google Scholar]
- Inkinen, S.; Hakkarinen, M.; Albertsson, A.-C.; Södergård, A. From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors. Biomacromolecules 2011, 12, 3, 523. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biotechnol. 2006, 72, 2, 244. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Jarerat, A. Biodegradation of poly(l-lactide). Biotechnol. Lett. 2004, 26, 771. [Google Scholar] [CrossRef]
- Khabbaz, F.; Karlsson, S.; Albertsson, A.-C. PY-GC/MS an effective technique to characterizing of degradation mechanism of poly (L-lactide) in the different environment. J. Appl. Polym. Sci. 2000, 78, 2369. [Google Scholar] [CrossRef]
- Ingrao, C.; Tricase, C.; Cholewa-Wójcik, A.; Kawecka, A.; Rana, R.; Siracusa, V. Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment. Sci. Total Environ. 2015, 537, 385. [Google Scholar] [CrossRef]
- Alaerts, L.; Augustinus, M.; Van Acker, K. Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability 2018, 10, 1487. [Google Scholar] [CrossRef] [Green Version]
- Maqsood, M.; Langensiepen, F.; Seide, G. Investigation of melt spinnability of plasticized polylactic acid biocomposites-containing intumescent flame retardant. J. Therm. Anal. Calorim. 2020, 139, 305. [Google Scholar] [CrossRef] [Green Version]
- Nowak, B.; Pająk, J. Biodegradacja polilaktydu (PLA). Arch. Waste Manag. Environ. Prot. 2010, 12, 2. (In Polish) [Google Scholar]
- Karamanlioglu, M.; Robson, G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013, 98, 2063–2071. [Google Scholar] [CrossRef]
- Ehlers, B.K.; Berg, M.P.; Staudt, M.; Holmstrup, M.; Glasius, M.; Ellers, J.; Tomiolo, S.; Madsen, R.M.; Slotsbo, S.; Penuelas, J. Plant Secondary Compounds in Soil and Their Role in Belowground Species Interactions. Trends Ecol. Evol. 2020, 35, 8, 716. [Google Scholar] [CrossRef]
- Laudicina, V.A.; Palazzolo, E.; Badalucco, L. Natural Organic Compounds in Soil Solution: Potential Role as Soil Quality Indicators. Curr. Org. Chem. 2013, 17, 2991. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO) and the United Nations Environment Programme (UNEP). Global Assessment of Soil Pollution—Summary for Policy Makers; FAO and UNEP: Rome, Italy, 2021; ISBN 978-92-5-134448-4. [Google Scholar]
- Silva, D.D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018, 340, 9. [Google Scholar] [CrossRef]
- Visan, A.I.; Popescu-Pelin, G.; Socol, G. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery—A Basic Review. Polymers 2021, 13, 1272. [Google Scholar] [CrossRef]
- CSN EN 14995:2009 Plastics—Evaluation of Compostability—Test Scheme and Specifications. Available online: https://www.en-standard.eu/csn-en-14995-plastics-evaluation-of-compostability-test-scheme-and-specifications/ (accessed on 7 December 2021).
- Silverstein, R.M.; Webster, F.X.; Kieml, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons: New York, NY, USA, 2005; ISBN 0-471-39362-2. [Google Scholar]
- Miros-Kudra, P.; Gzyra-Jagieła, K.; Kudra, M. Physicochemical Assessment of the Biodegradability of Agricultural Nonwovens Made of PLA. Fibres Text. East. Eur. 2021, 1, 26. [Google Scholar] [CrossRef]
- Nikolic, L.; Ristic, I.; Adnadjevic, B.; Nikolic, V.; Jovanovic, J.; Stankovic, M. Novel Microwave-Assisted Synthesis of Poly(D,L-lactide): The Influence of Monomer/Initiator Molar Ratio on the Product Properties. Sensors 2010, 10, 5063. [Google Scholar] [CrossRef]
- Tang, W.; Wang, B.; Li, J.; Li, Y.; Zhang, Y.; Quan, H.; Huang, Z. Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives. J. Mater. Sci. 2019, 54, 1171. [Google Scholar] [CrossRef]
- Devi, P.N.; Sathiyabama, J.; Rajendran, S. Study of surface morphology and inhibition efficiency of mild steel in simulated concrete pore solution by lactic acid–Zn2+ system. Int. J. Corros. Scale Inhib. 2017, 6, 18. [Google Scholar] [CrossRef]
- Jarerat, A.; Tokiwa, Y. Poly(L-lactide) degradation by Saccharothrix waywayandensis. Biotechnol. Lett. 2003, 25, 401. [Google Scholar] [CrossRef]
- Artham, T.; Doble, M. Biodegradation of aliphatic and aromatic polycarbonates. Macromol. Biosci. 2008, 8, 14–24. [Google Scholar] [CrossRef] [PubMed]
Sample | Medium | Extraction Type | Time of Degradation, Week | Mn, g/mol per PS | Mw, g/mol per PS | (Mw/Mn) |
---|---|---|---|---|---|---|
G0 Chloroform 24 | CHCl3 | 24 h | 0 | 380 | 900 | 2.4 |
G20 Chloroform 24 | CHCl3 | 24 h | 20 | 500 | 930 | 1.9 |
G24 Chloroform 24 | CHCl3 | 24 h | 24 | 590 | 1260 | 2.1 |
G0 Chloroform Ult | CHCl3 | ultrasonic | 0 | 500 | 1010 | 2.0 |
G20 Chloroform Ult | CHCl3 | ultrasonic | 20 | 520 | 1170 | 2.3 |
G25 Chloroform Ult | CHCl3 | ultrasonic | 24 | 570 | 1440 | 2.5 |
G0 Water 24 | H2O | 24 h | 0 | 520 | 780 | 1.5 |
G20 Water 24 | H2O | 24 h | 20 | 550 | 1190 | 2.1 |
G24 Water 24 | H2O | 24 h | 24 | 420 | 1170 | 2.8 |
G0 Water Ult | H2O | ultrasonic | 0 | 480 | 650 | 1.4 |
G20 Water Ult | H2O | ultrasonic | 20 | 480 | 840 | 1.7 |
G24 Water Ult | H2O | ultrasonic | 24 | 390 | 1060 | 2.7 |
Name of Degradation Product | Retention Time Range | Mass-to-Charge Ratio (m/z) |
---|---|---|
Acetaldehyde | 3–5.8 min (4.874 min) | 29; 43; 44 |
Lactic acid | 5.8–9 min (6.767 min) | 29; 43; 44 |
2-propenoic acid | 9–9.4 min (9.187 min) | 45; 55; 72 |
Pentane-2,5-dione | 9.4–10.2 min (10.01 min) | 29; 43; 57 |
Lactide | 10.2–12 min (10.61 and 11.46 min) | 28; 43; 45; 56 |
Oligomers | 12–38 min | 100; 128; 200; 272; 344 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawczyk-Walach, M.; Gzyra-Jagieła, K.; Milczarek, A.; Jóźwik-Pruska, J. Characterization of Potential Pollutants from Poly(lactic acid) after the Degradation Process in Soil under Simulated Environmental Conditions. AppliedChem 2021, 1, 156-172. https://doi.org/10.3390/appliedchem1020012
Krawczyk-Walach M, Gzyra-Jagieła K, Milczarek A, Jóźwik-Pruska J. Characterization of Potential Pollutants from Poly(lactic acid) after the Degradation Process in Soil under Simulated Environmental Conditions. AppliedChem. 2021; 1(2):156-172. https://doi.org/10.3390/appliedchem1020012
Chicago/Turabian StyleKrawczyk-Walach, Marta, Karolina Gzyra-Jagieła, Anna Milczarek, and Jagoda Jóźwik-Pruska. 2021. "Characterization of Potential Pollutants from Poly(lactic acid) after the Degradation Process in Soil under Simulated Environmental Conditions" AppliedChem 1, no. 2: 156-172. https://doi.org/10.3390/appliedchem1020012
APA StyleKrawczyk-Walach, M., Gzyra-Jagieła, K., Milczarek, A., & Jóźwik-Pruska, J. (2021). Characterization of Potential Pollutants from Poly(lactic acid) after the Degradation Process in Soil under Simulated Environmental Conditions. AppliedChem, 1(2), 156-172. https://doi.org/10.3390/appliedchem1020012