Oxygen: Highlights from the Papers Published in the Journal up to February 2024
Acknowledgments
Conflicts of Interest
List of Contributions
- Hancock, J.T. A brief history of oxygen: 250 years on. Oxygen 2022, 2, 31–39.
- den Ouden, T.H.B.; Wingelaar, T.T.; Endert, E.L.; van Ooij, P.-J.A.M. Lung diffusing capacity in Dutch Special Operations Forces divers exposed to oxygen rebreathers over 18 Years. Oxygen 2022, 2, 40–47.
- Breedon, S.A.; Storey, K.B. Lost in Translation: Exploring microRNA biogenesis and messenger RNA fate in anoxia-tolerant turtles. Oxygen 2022, 2, 227–245.
- Edge, R.; Truscott, T.G. The reactive oxygen species singlet oxygen, hydroxy radicals, and the superoxide radical anion—Examples of their roles in biology and medicine. Oxygen 2021, 1, 77–95.
- Blackstone, N.W. Reactive oxygen species signaling pathways: Arbiters of evolutionary conflict? Oxygen 2022, 2, 269–285.
- Blackstone, N.W. Reactive oxygen and sulfur species: Partners in crime. Oxygen 2022, 2, 493–502.
- Jiménez-Quesada, M.J.; Castro, A.J.; Lima-Cabello, E.; Alché, J.d.D. Cell localization of DPI-dependent production of superoxide in reproductive tissues of the olive tree (Olea europaea L.). Oxygen 2022, 2, 79–90.
- Cilio, S.; Rienzo, M.; Villano, G.; Mirto, B.F.; Giampaglia, G.; Capone, F.; Ferretti, G.; Di Zazzo, E.; Crocetto, F. Beneficial effects of antioxidants in male infertility management: A narrative review. Oxygen 2022, 2, 1–11.
- Benko, F.; Ďuračka, M.; Baňas, Š.; Lukáč, N.; Tvrdá, E. Biological relevance of free radicals in the process of physiological capacitation and cryocapacitation. Oxygen 2022, 2, 164–176.
- Tan, Y.; Cheong, M.S.; Cheang, W.S. Roles of reactive oxygen species in vascular complications of diabetes: Therapeutic properties of medicinal plants and food. Oxygen 2022, 2, 246–268.
- Atlante, A.; Valenti, D.; Latina, V.; Amadoro, G. Role of oxygen radicals in Alzheimer’s disease: Focus on Tau protein. Oxygen 2021, 1, 96–120.
- Miranda, M.R.; Vestuto, V.; Moltedo, O.; Manfra, M.; Campiglia, P.; Pepe, G. The ion channels involved in oxidative stress-related gastrointestinal diseases. Oxygen 2023, 3, 336–365.
- Björn, L.O. Photosynthetic production of molecular oxygen by water oxidation. Oxygen 2022, 2, 337–347.
- Nosaka, Y. Molecular mechanisms of oxygen evolution reactions for artificial photosynthesis. Oxygen 2023, 3, 407–451.
- Hocke, K. Oxygen in the Earth system. Oxygen 2023, 3, 287–299.
- Kourtidis, K.; Vorenhout, M. The influence of the atmospheric electric field on soil redox potential. Oxygen 2023, 3, 386–393.
- Polutchko, S.K.; Adams, W.W., III; Escobar, C.M.; Demmig-Adams, B. Conquering space with crops that produce ample oxygen and antioxidants. Oxygen 2022, 2, 211–226.
- Navarre, D.A.; Zhu, M.; Hellmann, H. Plant antioxidants affect human and gut health, and their biosynthesis is influenced by environment and reactive oxygen species. Oxygen 2022, 2, 348–370.
- Raymond, M.V.; Yount, T.M.; Rogers, R.R.; Ballmann, C.G. Effects of acute red spinach extract ingestion on repeated sprint performance in Division I NCAA female soccer athletes. Oxygen 2023, 3, 133–142.
- Nomura, T.; Matsuda, Y.H.; Kobayashi, T.C. Solid and Liquid Oxygen under ultrahigh magnetic fields. Oxygen 2022, 2, 152–163.
- Steinadler, J.; Zeman, O.E.O.; Bräuniger, T. Correlation of the isotropic NMR chemical shift with oxygen coordination distances in periodic solids. Oxygen 2022, 2, 327–336.
- Pappas, V.M.; Palaiogiannis, D.; Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Optimization of pulsed electric-field-based total polyphenols’ extraction from Elaeagnus pungens ‘Limelight’ leaves using hydroethanolic mixtures. Oxygen 2022, 2, 537–546.
- Samrot, A.V.; Ram Singh, S.P.; Deenadhayalan, R.; Rajesh, V.V.; Padmanaban, S.; Radhakrishnan, K. Nanoparticles, a double-edged sword with oxidant as well as antioxidant properties—A Review. Oxygen 2022, 2, 591–604.
- Samokhin, P.; Gardner, G.L.; Moffatt, C.; Stuart, J.A. An inexpensive incubator for mammalian cell culture capable of regulating O2, CO2, and temperature. Oxygen 2022, 2, 22–30.
- Melani, A.S.; Refini, R.M.; Croce, S.; Messina, M. Home Oxygen Therapy (HOT) in stable Chronic Obstructive Pulmonary Disease (COPD) and Interstitial Lung Disease (ILD): Similarities, differences and doubts. Oxygen 2022, 2, 371–381.
- Rocher, A.; Aaronson, P.I. The thirty-fifth anniversary of K+ channels in O2 sensing: What we know and what we don’t know. Oxygen 2024, 4, 53–89.
- Napolitano, G.; Fasciolo, G.; Venditti, P. The ambiguous aspects of oxygen. Oxygen 2022, 2, 382–409.
References
- Zhang, W.; Dai, J.; Li, C.; Yu, X.; Xue, Z.; Saxén, H. A review on explorations of the oxygen blast furnace process. Steel Res. Int. 2021, 92, 2000326. [Google Scholar] [CrossRef]
- Lambert, I.B.; Donnelly, T.H. Atmospheric oxygen levels in the Precambrian: A review of isotopic and geological evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 97, 83–91. [Google Scholar] [CrossRef]
- Canfield, D.E. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 2005, 33, 1–36. [Google Scholar] [CrossRef]
- Muehlenbachs, K. The oxygen isotopic composition of the oceans, sediments and the seafloor. Chem. Geol. 1998, 145, 263–273. [Google Scholar] [CrossRef]
- Cox, G.K.; Gillis, T.E. Surviving anoxia: The maintenance of energy production and tissue integrity during anoxia and reoxygenation. J. Exp. Biol. 2020, 223, jeb207613. [Google Scholar] [CrossRef]
- Lee, P.; Chandel, N.S.; Simon, M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 2020, 21, 268–283. [Google Scholar] [CrossRef]
- Singer, M.; Young, P.J.; Laffey, J.G.; Asfar, P.; Taccone, F.S.; Skrifvars, M.B.; Meyhoff, C.S.; Radermacher, P. Dangers of hyperoxia. Crit. Care 2021, 25, 440. [Google Scholar] [CrossRef]
- Singleton, D.C.; Macann, A.; Wilson, W.R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 2021, 18, 751–772. [Google Scholar] [CrossRef]
- Waszczak, C.; Carmody, M.; Kangasjärvi, J. Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 2018, 69, 209–236. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxidative Med. Cell. Longev. 2020, 2020, 8609213. [Google Scholar] [CrossRef]
- Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozłowska, J.; Kozubski, W. Oxidative stress factors in Parkinson’s disease. Neural Regen. Res. 2021, 16, 1383. [Google Scholar] [CrossRef]
- Tehrani, H.S.; Moosavi-Movahedi, A.A. Catalase and its mysteries. Prog. Biophys. Mol. Biol. 2018, 140, 5–12. [Google Scholar] [CrossRef]
- Peng, C.; Wang, X.; Chen, J.; Jiao, R.; Wang, L.; Li, Y.M.; Zuo, Y.; Liu, Y.; Lei, L.; Ma, K.Y.; et al. Biology of ageing and role of dietary antioxidants. BioMed Res. Int. 2014, 2014, 831841. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E. Nitric oxide signaling in health and disease. Cell 2022, 185, 2853–2878. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, R.; Wu, L.; Yang, G. Hydrogen sulfide signaling in regulation of cell behaviors. Nitric Oxide 2020, 103, 9–19. [Google Scholar] [CrossRef]
- Hancock, J.T.; Whiteman, M. Hydrogen sulfide and cell signaling: Team player or referee? Plant Physiol. Biochem. 2014, 78, 37–42. [Google Scholar] [CrossRef]
- Xie, H.-T.; Wan, Z.-Y.; Li, S.; Zhang, Y. Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell 2014, 26, 2007–2023. [Google Scholar] [CrossRef]
- Ali, M.F.; Muday, G.K. Reactive oxygen species are signaling molecules that modulate plant reproduction. Plant Cell Environ. 2024, 2024, 1–14. [Google Scholar] [CrossRef]
- Riley, J.C.; Behrman, H.R. Oxygen radicals and reactive oxygen species in reproduction. Proc. Soc. Exp. Biol. Med. 1991, 198, 781–791. [Google Scholar] [CrossRef]
- Agarwal, A.; Allamaneni, S.S.; Nallella, K.P.; George, A.T.; Mascha, E. Correlation of reactive oxygen species levels with the fertilization rate after in vitro fertilization: A qualified meta-analysis. Fertil. Steril. 2005, 84, 228–231. [Google Scholar] [CrossRef]
- Peterhans, E. Reactive oxygen species and nitric oxide in viral diseases. Biol. Trace Elem. Res. 1997, 56, 107–116. [Google Scholar] [CrossRef]
- Tieu, K.; Ischiropoulos, H.; Przedborski, S. Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life 2003, 55, 329–335. [Google Scholar] [CrossRef]
- Koo, J.R.; Vaziri, N.D. Effects of diabetes, insulin and antioxidants on NO synthase abundance and NO interaction with reactive oxygen species. Kidney Int. 2003, 63, 195–201. [Google Scholar] [CrossRef]
- Junge, W. Oxygenic photosynthesis: History, status and perspective. Q. Rev. Biophys. 2019, 52, e1. [Google Scholar] [CrossRef]
- Cunningham, N.J.; Spencer, J.R.; Feldman, P.D.; Strobel, D.F.; France, K.; Osterman, S.N. Detection of Callisto’s oxygen atmosphere with the Hubble Space Telescope. Icarus 2015, 254, 178–189. [Google Scholar] [CrossRef]
- Naliyadhara, N.; Kumar, A.; Gangwar, S.K.; Devanarayanan, T.N.; Hegde, M.; Alqahtani, M.S.; Abbas, M.; Sethi, G.; Kunnumakkara, A. Interplay of dietary antioxidants and gut microbiome in human health: What has been learnt thus far? J. Funct. Foods 2023, 100, 105365. [Google Scholar] [CrossRef]
- Park, H.A.; Ellis, A.C. Dietary antioxidants and Parkinson’s disease. Antioxidants 2020, 9, 570. [Google Scholar] [CrossRef]
- Kondo, Y.; Achouri, N.L.; Falou, H.A.; Atar, L.; Aumann, T.; Baba, H.; Boretzky, K.; Caesar, C.; Calvet, D.; Chae, H.; et al. First observation of 28O. Nature 2023, 620, 965–970. [Google Scholar] [CrossRef]
- Li, J.G.; Hu, B.S.; Zhang, S.; Xu, F.R. Unbound 28O, the heaviest oxygen isotope observed: A cutting-edge probe for testing nuclear models. Nucl. Sci. Tech. 2024, 35, 21. [Google Scholar] [CrossRef]
- Nikzamir, M.; Akbarzadeh, A.; Panahi, Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. J. Drug Deliv. Sci. Technol. 2012, 61, 102316. [Google Scholar] [CrossRef]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Front. Nanotechnol. 2020, 2, 579954. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hancock, J.T. Oxygen: Highlights from the Papers Published in the Journal up to February 2024. Oxygen 2024, 4, 117-121. https://doi.org/10.3390/oxygen4010007
Hancock JT. Oxygen: Highlights from the Papers Published in the Journal up to February 2024. Oxygen. 2024; 4(1):117-121. https://doi.org/10.3390/oxygen4010007
Chicago/Turabian StyleHancock, John T. 2024. "Oxygen: Highlights from the Papers Published in the Journal up to February 2024" Oxygen 4, no. 1: 117-121. https://doi.org/10.3390/oxygen4010007
APA StyleHancock, J. T. (2024). Oxygen: Highlights from the Papers Published in the Journal up to February 2024. Oxygen, 4(1), 117-121. https://doi.org/10.3390/oxygen4010007