Freshwater Slugs in the Caribbean: Rediscovery of Tantulidae (Acochlidimorpha, Panpulmonata) with the Description of Potamohedyle espinosai n. gen. n. sp. from Cuba
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Fixation
2.2. Embedding and Semi-Thin Sectioning
2.3. Digitalisation and 3D Reconstruction with Amira®
2.4. Radula Analyses by Light and Scanning Electron Microscopy (SEM)
2.5. Molecular Analyses
2.6. Nomenclatural Acts
3. Results
3.1. Systematics
3.2. External Morphology
3.3. Internal Microanatomy
3.3.1. Central Nervous System (CNS)
3.3.2. Digestive System
3.3.3. Circulatory and Excretory Systems
3.3.4. Reproductive System
3.4. Phylogenetic Placement
4. Discussion
4.1. Anatomical Resemblance and Peculiarities of Potamohedyle espinosai n. gen. n. sp.
4.2. Ecology of Freshwater Slugs
4.3. Evolutionary Scenarios of Freshwater Colonisation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zachos, F.E.; Habel, J.C. Biodiversity Hotspots: Distribution and Protection of conservation Priority Areas; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Roberts, C.M.; McClean, C.J.; John, E.N.V.; Hawkins, J.P.; Allen, G.R.; McAllister, D.E.; Mittermeier, C.G.; Schueler, F.W.; Spalding, M.; Wells, F.E.; et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 2002, 295, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Larramendi, J. Biodiversidad de Cuba; Ediciones Polymita: La Habana, Cuba, 2007. [Google Scholar]
- Espinosa, J.; Ortea, J. Moluscos Terrestres de Cuba; UPC Print: Vasa, Finland, 2009; p. 191. [Google Scholar]
- Diez, Y.L.; Sanjuan, C.; Bosch, C.; Catalá, A.; Monnens, M.; Curini-Galletti, M.; Artois, T. Diversity of free-living flatworms (Platyhelminthes) in Cuba. Biol. J. Linn. Soc. 2023, 140, 423–433. [Google Scholar] [CrossRef]
- Mancina, C.A.; Cruz Flores, D.D. Diversidad Biológica de Cuba: Métodos de Inventario, Monitoreo y Colecciones Biológicas; Editorial AMA: La Habana, Cuba, 2017; p. 480. [Google Scholar]
- Reyes-Tur, B.; Alonso Bosch, R.; Bécquer, R.; García-Beltrán, J.Á. Cuba: Biodiversity, conservation and evolution. Biol. J. Linn. Soc. 2023, 140, 319–322. [Google Scholar] [CrossRef]
- Torres-Cambas, Y.; Megna, Y.S.; Salazar-Salina, J.C.; Diez, Y.L.; Catalá, A.; Trapero-Quintana, A.D.; Schröder, B.; Domisch, S. A database of freshwater macroinvertebrates occurrence records across Cuba. Sci. Data 2023, 10, 169. [Google Scholar] [CrossRef]
- Bello, O.C.; López, P.; Trapero, A.D.; Suárez, Y.; Neyra, B.; Hernández, M. Macroinvertebrados dulceacuícolas. In Diversidad Biológica de Cuba: Métodos de Inventario, Monitoreo y Colecciones Biológicas; Mancina, C.A., Cruz Flores, D.D., Eds.; Editorial AMA: La Habana, Cuba, 2017; pp. 307–325. [Google Scholar]
- Tack, L.F.J.; Vonk, J.A.; van Riel, M.C.; de Leeuw, J.J.; Koopman, J.; Maathuis, M.A.M.; Schilder, K.; van Hall, R.L.; Huisman, J.; van der Geest, H.G. Food webs in isolation: The food-web structure of a freshwater reservoir with armoured shores in a former coastal bay area. Sci. Total Environ. 2024, 925, 171780. [Google Scholar] [CrossRef]
- Atkinson, C.L.; Hopper, G.W.; Kreeger, D.A.; Lopez, J.W.; Maine, A.N.; Sansom, B.J.; Schwalb, A.; Vaughn, C.C. Gains and gaps in knowledge surrounding freshwater molluske ecosystem services. Freshw. Mollusk Biol. Conserv. 2023, 26, 20–31, 12. [Google Scholar] [CrossRef]
- Lu, X.-T.; Gu, Q.-Y.; Limpanont, Y.; Song, L.-G.; Wu, Z.-D.; Okanurak, K.; Lv, Z.-Y. Snail-borne parasitic diseases: An update on global epidemiological distribution, transmission interruption and control methods. Infect. Dis. Poverty 2018, 7, 28. [Google Scholar] [CrossRef]
- Alonso, Á.; Collado, G.A.; Gérard, C.; Levri, E.P.; Salvador, R.B.; Castro-Díez, P. Effects of the invasive aquatic snail Potamopyrgus antipodarum (Gray, 1853) on ecosystem properties and services. Hydrobiologia 2023, 1–19. [Google Scholar] [CrossRef]
- Geist, J.; Benedict, A.; Dobler, A.H.; Hoess, R.; Hoos, P. Functional interactions of non-native aquatic fauna with european freshwater bivalves: Implications for management. Hydrobiologia 2023, 1–23. [Google Scholar] [CrossRef]
- Rezac, C.R.; Ellwanger, R.J.; Donohoo, S.A.; Hartfield, P.D.; Ruppel, A.S.; Ruppel, D.S.; Wagner, M.D.; Whelan, N.V. Surveys that prioritize site number over time per site will result in better gastropod status assessments: A case study on the rediscovery of big black rocksnail. Biodivers. Conserv. 2024, 33, 1811–1825. [Google Scholar] [CrossRef]
- Böhm, M.; Dewhurst-Richman, N.I.; Seddon, M.; Ledger, S.E.H.; Albrecht, C.; Allen, D.; Bogan, A.E.; Cordeiro, J.; Cummings, K.S.; Cuttelod, A.; et al. The conservation status of the world’s freshwater molluscs. Hydrobiologia 2021, 848, 3231–3254. [Google Scholar] [CrossRef]
- MolluscaBase. Available online: https://www.molluscabase.org (accessed on 30 April 2024).
- Espinosa, J.; Herrera-Uría, J.; Ortea, J. Moluscos terrestres y fluviales del sector Cupeyal del norte, Parque Nacional Alejandro de Humboldt, Guantánamo, Cuba, con la descripción de nuevas especies. Rev. Acad. Canar. Cienc. 2017, 29, 61–110. [Google Scholar]
- Espinosa, J.; Ortea, J.; Diez-García, Y.L. El género Neritilia von Martens, 1879 (Mollusca: Gastropoda: Neritiliidae) en Cuba, con la descripción de dos nuevas especies. Avicennia 2017, 20, 49–52. [Google Scholar]
- Vázquez Perera, A.A.; Perera Valderrama, S. Endemic freshwater molluscs of Cuba and their conservation status. Trop. Conserv. Sci. 2010, 3, 190–199. [Google Scholar] [CrossRef]
- Yong, M.; Gutierrez, A.; Perera, G.; Durand, P.; Pointier, J.P. The Biomphalaria havanensis complex (Gastropoda: Planorbidae) in Cuba: A morphological and genetic study. J. Molluscan Stud. 2001, 67, 103–112. [Google Scholar] [CrossRef]
- Vázquez, A.A.; Cobian, D.; Sánchez, J.; Pointier, J.-P. First record of Littoridinops monroensis (Frauenfeld, 1863) (Gastropoda: Cochliopidae) in Cuba through a likely natural dispersal event. Molluscan Res. 2012, 32, 50–54. [Google Scholar] [CrossRef]
- Brenzinger, B.; Glaubrecht, M.; Jörger, K.M.; Schrödl, M.; Neusser, T.P. A new piece in the puzzle for the riverine slugs of the Acochlidiidae (Gastropoda: Panpulmonata: Acochlidimorpha) helps tracing steps of their freshwater invasion. Org. Divers. Evol. 2021, 21, 337–359. [Google Scholar] [CrossRef]
- Lydeard, C.; Cummings, K.S. Freshwater Mollusks of the World: A Distribution Atlas; John Hopkins University Press: Baltimore, MD, USA, 2019; p. 242. [Google Scholar]
- Jörger, K.M.; Brenzinger, B.; Neusser, T.P.; Martynov, A.V.; Wilson, N.G.; Schrödl, M. Panpulmonate habitat transitions: Tracing the evolution of Acochlidia (Heterobranchia, Gastropoda). bioRxiv 2014. [Google Scholar] [CrossRef]
- Schrödl, M.; Neusser, T.P. Towards a phylogeny and evolution of Acochlidia (Mollusca: Gastropoda: Opisthobranchia). Zool. J. Linn. Soc. 2010, 158, 124–154. [Google Scholar] [CrossRef]
- Rankin, J.J. A freshwater shell-less mollusc from the Caribbean: Structure, biotics and contribution to a new understanding of the Acochlidioidea. R. Ont. Mus. Life Sci. Contrib. 1979, 116, 1–123. [Google Scholar]
- Neusser, T.P.; Schrödl, M. Tantulum elegans reloaded: A computer-based 3d-visualization of the anatomy of a Caribbean freshwater acochlidian gastropod. Invertebr. Biol. 2007, 126, 18–39. [Google Scholar] [CrossRef]
- Spurr, A.R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 1969, 26, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Ruthensteiner, B. Soft part 3d visualization by serial sectioning and computer reconstruction. Zoosymposia 2008, 1, 63–100. [Google Scholar] [CrossRef]
- Richardson, K.C.; Jarett, L.; Finke, E.H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960, 35, 313–323. [Google Scholar] [CrossRef]
- Jörger, K.M.; Stöger, I.; Kano, Y.; Fukuda, H.; Schrödl, M. On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evol. Biol. 2010, 10, 323. [Google Scholar] [CrossRef]
- Neusser, T.P.; Bergmeier, F.S.; Brenzinger, B.; Kohnert, P.; Egger, C.; Yap-Chiongco, M.K.; Kocot, K.; Schrödl, M.; Jörger, K.M. Shallow-water interstitial malacofauna of the Azores. Açoreana 2021, 11, 103–123. [Google Scholar]
- Neusser, T.P.; Jörger, K.M.; Schrödl, M. Cryptic species in tropic sands—Interactive 3D anatomy, molecular phylogeny and evolution of meiofaunal Pseudunelidae (Gastropoda, Acochlidia). PLoS ONE 2011, 6, e23313. [Google Scholar] [CrossRef] [PubMed]
- Brenzinger, B.; Neusser, T.P.; Jörger, K.M.; Schrödl, M. Integrating 3D microanatomy and molecules: Natural history of the pacific freshwater slug Strubellia Odhner, 1937 (Heterobranchia: Acochlidia), with description of a new species. J. Molluscan Stud. 2011, 77, 351–374. [Google Scholar] [CrossRef]
- Neusser, T.P.; Jörger, K.M.; Lodde-Bensch, E.; Strong, E.E.; Schrödl, M. The unique deep sea—Land connection: Interactive 3D visualization and molecular phylogeny of Bathyhedyle boucheti n. sp. (Bathyhedylidae n. fam.)—The first panpulmonate slug from bathyal zones. PeerJ 2016, 4, e2738. [Google Scholar] [CrossRef]
- Kano, Y.; Neusser, T.P.; Fukumori, H.; Jörger, K.M.; Schrödl, M. Sea-slug invasion of the land. Biol. J. Linn. Soc. 2015, 116, 253–259. [Google Scholar] [CrossRef]
- Edgar, R.C. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. Ufboot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. Iq-tree 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. Iq-tree: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-iq-tree: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the cipres science gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Stamatakis, A. Raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Drainas, K.; Carlson, C.H.; Jörger, K.M.; Schrödl, M.; Neusser, T.P. The first helicoid sea slug: 3D microanatomy of Helicohedyle dikiki n. gen., n. sp. (Panpulmonata: Acochlidiida) from Guam. J. Molluscan Stud. 2017, 84, 1–11. [Google Scholar] [CrossRef]
- Neusser, T.P.; Fukuda, H.; Jörger, K.M.; Kano, Y.; Schrödl, M. Sacoglossa or Acochlidia? 3D reconstruction, molecular phylogeny and evolution of Aitengidae (Gastropoda: Heterobranchia). J. Molluscan Stud. 2011, 77, 332–350. [Google Scholar] [CrossRef]
- Lindberg, D.R.; Sigwart, J.D. What is the molluscan osphradium? A reconsideration of homology. Zool. Anz.—J. Comp. Zool. 2015, 256, 14–21. [Google Scholar] [CrossRef]
- Simone, L.R.L. The mollusk osphradium, structure and evolution. Malacopedia 2021, 4, 38–49. [Google Scholar]
- Edlinger, K. Beiträge zur Anatomie, Histologie, Ultrastruktur und Physiologie der chemischen Sinnesorgane einiger Cephalaspidea (Mollusca, Opisthobranchia). Zool. Anz. 1980, 205, 90–112. [Google Scholar]
- Neusser, T.P.; Schrödl, M. Between Vanuatu tides: 3D anatomical reconstruction of a new brackish water acochlidian gastropod from Espiritu Santo. Zoosystema 2009, 31, 453–469. [Google Scholar] [CrossRef]
- Bernard, F. Recherches sur les organes palléaux des gastéropodes prosobranches. Ann. Sci. Nat. Zool. 1890, 7, 89–404. [Google Scholar]
- Hulbert, G.C.E.B.; Yonge, C.M. A possible function of the osphradium in the Gastropoda. Nature 1937, 139, 840–841. [Google Scholar] [CrossRef]
- Kohn, A.J. Chemoreception in gastropod molluscs. Am. Zool. 1961, 1, 291–308. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Schild, D. Chemosensitivity of the osphradium of the pond snail Lymnaea stagnalis. J. Exp. Biol. 1995, 198, 1743–1754. [Google Scholar] [CrossRef]
- Haszprunar, G. The fine morphology of the osphradial sense organs of the Mollusca. Iii. Placophora and Bivalvia. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1987, 315, 37–61. [Google Scholar]
- Haszprunar, G. The fine morphology of the osphradial sense organs of the Mollusca ii. Allogastropoda (Architectonicidae, Pyramidellidae). Philos. Trans. R. Soc. Lond. B 1985, 307, 497–505. [Google Scholar]
- Taylor, J.D.; Miller, J.A. The morphology of the osphradium in relation to feeding habits in meso- and neogastropods. J. Molluscan Stud. 1989, 55, 227–237. [Google Scholar] [CrossRef]
- Brenzinger, B.; Padula, V.; Schrödl, M. Insemination by a kiss? Interactive 3D-microanatomy, biology and systematics of the mesopsammic cephalaspidean sea slug Pluscula cuica Marcus, 1953 from Brazil (Gastropoda: Euopisthobranchia: Philinoglossidae). Org. Divers. Evol. 2013, 13, 33–54. [Google Scholar] [CrossRef]
- Brenzinger, B.; Haszprunar, G.; Schrödl, M. At the limits of a successful body plan—3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod. Front. Zool. 2013, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Rückert, I.; Altnöder, A.; Schrödl, M. Computer-based 3D anatomical reconstruction and systematic placement of the mesopsammic gastropod Platyhedyle denudata Salvini-Plawen, 1973 (Opisthobranchia, Sacoglossa). Org. Divers. Evol. 2008, 8, 358–367. [Google Scholar] [CrossRef]
- Huber, G. On the cerebral nervous system of marine Heterobranchia (Gastropoda). J. Molluscan Stud. 1993, 59, 381–420. [Google Scholar] [CrossRef]
- Haase, M.; Wawra, E. The genital system of Acochlidium fijiensis (Opisthobranchia: Acochlidioidea) and its inferred function. Malacologia 1996, 38, 143–151. [Google Scholar]
- Jörger, K.M.; Heß, M.; Neusser, T.P.; Schrödl, M. Sex in the beach: Spermatophores, dermal insemination and 3D sperm ultrastructure of the aphallic mesopsammic Pontohedyle milaschewitchii (Acochlidia, Opisthobranchia, Gastropoda). Mar. Biol. 2009, 156, 1159–1170. [Google Scholar] [CrossRef]
- Kohnert, P.; Neusser, T.P.; Jörger, K.M.; Schrödl, M. Time for sex change! 3D-reconstruction of the copulatory system of the ‘aphallic‘ Hedylopsis ballantinei (Gastropoda, Acochlidia). Thalassas 2011, 27, 113–119. [Google Scholar]
- Neusser, T.P.; Heß, M.; Schrödl, M. Tiny but complex—Interactive 3d visualization of the interstitial acochlidian gastropod Pseudunela cornuta (Challis, 1970). Front. Zool. 2009, 6, 20. [Google Scholar] [CrossRef]
- Challis, D.A. Hedylopsis cornuta and Microhedyle verrucosa, two new Acochlidiacea (Mollusca: Opisthobranchia) from the Solomon Islands protectorate. Trans. R. Soc. N. Z. Biol. Sci. 1970, 12, 29–40. [Google Scholar]
- Brenzinger, B.; Neusser, T.P.; Glaubrecht, M.; Haszprunar, G.; Schrödl, M. Redescription and three-dimensional reconstruction of the limnic acochlidian gastropod Strubellia paradoxa (Strubell, 1892) (Gastropoda: Euthyneura) from Ambon, Indonesia. J. Nat. Hist. 2010, 45, 183–209. [Google Scholar] [CrossRef]
- Küthe, P. Organisation und systematische Stellung des Acochlidium paradoxum Strubell. Zool. Jahrb. Abt. Syst. 1935, 66, 513–540. [Google Scholar]
- Bücking, G. Hedyle amboinensis (Strubell). Zool. Jahrb. Syst. 1933, 64, 549–582. [Google Scholar]
- Bayer, F.M.; Fehlmann, H.A. The discovery of a freshwater opisthobranchiate mollusk, Acochlidium amboinense Strubell, in the Palau islands. Proc. Biol. Soc. Wash. 1960, 73, 183–194. [Google Scholar]
- Wawra, E. Acochlidium bayerfehlmanni spec. nov. (Gastropoda: Opisthobranchia: Acochlidiacea) from Palau islands. Veliger 1980, 22, 215–218. [Google Scholar]
- Neusser, T.P.; Brenzinger, B.; Schrödl, M.; Jörger, K.M. Really a “secondary gill under the skin”? Unveiling “dorsal vessels” in freshwater slugs (Mollusca, Panpulmonata,Aacochlidimorpha). J. Morphol. 2023, 284, e21653. [Google Scholar] [CrossRef]
- Haynes, A.; Kenchington, W. Acochlidium fijiensis sp. nov. (Gastropoda: Opisthobranchia: Acochlidiacea) from Fiji. Veliger 1991, 34, 166–171. [Google Scholar]
- Haynes, A. The distribution of freshwater gastropods on four Vanuatu islands: Espíritu Santo, Pentecost, Éfate and Tanna (South Pacific). Ann. Limnol. 2000, 36, 101–111. [Google Scholar] [CrossRef]
- Little, C. The formation of urine by the prosobranch gastropod mollusc Viviparus viviparus Linn. J. Exp. Biol. 1965, 43, 39–54. [Google Scholar] [CrossRef]
- Martin, A.W. Excretion. In The Mollusca, Physiology, Part 2; Wilbur, K.M., Saleuddin, A.S.M., Eds.; Academic Press: New York, NY, USA, 1983; Volume 5, pp. 353–398. [Google Scholar]
- Estabrooks, W.A.; Kay, E.A.; McCarthy, S.A. Structure of the excretory system of hawaiian nerites (Gastropoda: Neritoidea). J. Molluscan Stud. 1999, 65, 61–72. [Google Scholar] [CrossRef]
- Little, C. The evolution of kidney function in the Neritacea (Gastropoda, Prosobranchia). J. Exp. Biol. 1972, 56, 249–261. [Google Scholar] [CrossRef]
- Dillon, R.T. The Ecology of Freshwater Molluscs; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Strong, E.E.; Galindo, L.A.; Kantor, Y.I. Quid est Clea helena? Evidence for a previously unrecognized radiation of assassin snails (Gastropoda: Buccinoidea: Nassariidae). PeerJ 2017, 5, e3638. [Google Scholar] [CrossRef] [PubMed]
- Lobo-da-Cunha, A. Structure and function of the digestive system in molluscs. Cell Tissue Res. 2019, 377, 475. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.P. Functional adaptations of the digestive system of the carnivorous mollusc Pleurobranchaea californica Macfarland, 1966. J. Morphol. 1984, 180, 253–269. [Google Scholar] [CrossRef]
- Kano, Y.; Fukumori, H. Predation on hardest molluscan eggs by confamilial snails (Neritidae) and its potential significance in egg-laying site selection. J. Molluscan Stud. 2010, 76, 360–366. [Google Scholar] [CrossRef]
- Neusser, T.P.; Bourke, A.J.; Jörger, K.M.; Kano, Y.; Schrödl, M.; Brenzinger, B. New insights into the diversity of the ‚bug-eating slugs‘ Aitengidae (Acochlidimorpha, Panpulmonata). In Book of Abstracts of the World Congress of Malacology 2022, Munich; Bergmeier, F.S., Brenzinger, B., Neusser, T.P., Eds.; Spixiana: Munich, Germany, 2022; Volume Supplement 30 B, p. 24. [Google Scholar]
- Abdou, A.; Keith, P.; Galzin, R. Freshwater neritids (Mollusca: Gastropoda) of tropical islands, amphidromy as a life cycle, a review. Rev. D’Écologie 2015, 70, 387–397. [Google Scholar] [CrossRef]
- Myers, M.J.; Meyer, C.P.; Resh, V.H. Neritid and thiarid gastropods from french polynesian streams: How reproduction (sexual, parthenogenetic) and dispersal (active, passive) affect population structure. Freshw. Biol. 2000, 44, 535–545. [Google Scholar] [CrossRef]
- Kano, Y. Hitchhiking behaviour in the obligatory upstream migration of amphidromous snails. Biol. Lett. 2009, 5, 465–468. [Google Scholar] [CrossRef]
- Kappes, H.; Haase, P. Slow, but steady: Dispersal of freshwater molluscs. Aquat. Sci. 2012, 74, 1–14. [Google Scholar] [CrossRef]
ZSM Museum N° | Fixation | Type of Investigation | Storage and Remarks |
---|---|---|---|
Mol 20240444 | 96% eth | external morphology | holotype |
Mol 20240445 | 96% eth | external morphology | paratypes (3 specimens) |
Mol 20230584 | 70% eth | histology, 3D | ss, 1.0 µm; adult, mature |
Mol 20230585 | 70% eth | histology, 3D | ss, 1.5 µm; juvenile |
Mol 20230586 | 70% eth | histology | ss, 1.5 µm; subadult |
Mol 20230587 | 96% eth | molecular analyses | DNA sample |
Mol 20230588 | 96% eth | molecular analyses | DNA sample |
Mol 20240446 | 70% eth | radula analysis by SEM | radula on SEM stub |
Mol 20240447 | 70% eth | light microscopy | whole mounts, 5 slides |
Taxon | Museum Number | GenBank Accession Numbers of Sequences | Source | |||
---|---|---|---|---|---|---|
18S rRNA | 28S rRNA | 16S rRNA | COI | |||
HEDYLOPSACEA | ||||||
Tantulidae | ||||||
Potamohedyle espinosai | ZSM Mol 20230588 | PQ276770 | PQ276771 | PQ276769 | PQ276046 | present study |
ZSM Mol 20230587 | PQ276768 | PQ276045 | present study | |||
Hedylopsidae | ||||||
Hedylopsis spiculifera | ZSM Mol 20080951 | HQ168430 | HQ168443 | no data | HQ168455 | [32] |
ZSM Mol 20080389 | no data | KF709319 | KF709245 | KF709351 | [25] | |
ZSM Mol 20081016 | KF709275 | no data | KF709246 | KF709353 | [25] | |
Hedylopsis ballantinei | ZSM Mol 20090244 | HQ168429 | HQ168442 | HQ168416 | HQ168454 | [32] |
Hedylopsis MOTU Moorea | AM C. 476056.001 | KF709276 | no data | KF709247 | KF709354 | [25] |
Hedylopsis sp. 1 Azores | ZSM Mol 20202407 | no data | no data | MW684374 | MW596409 | [33] |
Hedylopsis sp. 2 Azores | ZSM Mol 20130993A | no data | no data | MW684373 | MW596408 | [33] |
Hedylopsacea indet. | ||||||
Hedylopsacea MOTU Moorea | AM C. 476059.001 | KF709277 | KF709320 | no data | KF709355 | [25] |
Pseudunelidae | ||||||
Pseudunela cornuta | ZSM Mol 20071809 | JF819754 | KF709321 | JF819748 | JF819774 | [34] |
Pseudunela viatoris | ZSM Mol 20080020 | JF819751 | no data | JF819741 | JF819766 | [34] |
ZSM Mol 20070953 | no data | KF709322 | JF819745 | JF819770 | [34] | |
Pseudunela marteli | ZSM Mol 20080022 | JF819753 | no data | JF819746 | JF819771 | [34] |
ZSM Mol 20080393 | HQ168431 | HQ168444 | HQ168418 | HQ168456 | [32] | |
ZSM Mol 20100381 | KF709278 | KF709323 | KF709248 | KF709356 | [25] | |
Pseudunela MOTU Maledives | ZSM Mol 20110029 | KF709279 | KF709324 | KF709249 | KF709357 | [25] |
Pseudunela espiritusanta | ZSM Mol 20080117 | JF819755 | KF709325 | JF819749 | JF819775 | [34] |
Acochlidiidae | ||||||
Strubellia paradoxa | ZMB Moll. 193.944 | HQ168432 | HQ168445 | HQ168419 | HQ168457 | [32] |
Strubellia wawrai | ZSM Mol 20080016 | KF709280 | no data | JF819730 | JF819758 | [35] |
ZSM Mol 20071810 | no data | KF709326 | JF819734 | JF819762 | [35] | |
ZSM Mol 20080150 | KF709281 | KF709327 | JF819736 | JF819764 | [35] | |
Strubellia MOTU Sulawesi | ZSM Mol 20100339 | KF709282 | KF709328 | JF819740 | JF819765 | [35] |
Wallacellia siputbiru | ZMB Moll. 193.966 | KF709283 | KF709329 | KF709250 | KF709358 | [25] |
Palliohedyle MOTU Sulawesi | ZSM Mol 20100356 | KF709284 | JF828039 | JF828040 | JF828032 | [25] |
Acochlidium fijense | ZSM Mol 20080063 | HQ168433 | HQ168446 | HQ168420 | HQ168458 | [32] |
Acochlidium amboinense | ZMB Moll. 193.942a | KF709285 | KF709330 | KF709251 | KF709359 | [25] |
Acochlidium bayerfehlmanni | ZSM Mol 20080384 | KF709286 | no data | KF709252 | KF709360 | [25] |
Acochlidium sutteri | ZSM Mol 20080911 | KF709287 | KF709331 | KF709253 | KF709361 | [25] |
Acochlidium MOTU Flores | ZSM Mol 20080897 | KF709288 | KF709332 | KF709254 | KF709362 | [25] |
Acochlidium MOTU Sulawesi | ZSM Mol 20100341 | KF709289 | KF709333 | KF709255 | KF709363 | [25] |
Acochlidium MOTU Solomons | ZSM Mol 20080159 | KF709290 | KF709334 | KF709257 | KF709365 | [25] |
Bathyhedylidae | ||||||
Bathyhedyle boucheti | MNHN_IM-2000-27917 | KX721049 | KX721050 | KX721048 | no data | [36] |
Aitengidae | ||||||
Aiteng ater | JF828036 | JF828037 | JF828038 | JF828031 | [25] | |
Aiteng marefugitus | AB914671 | AB914672 | AB914673 | AB914674 | [37] | |
Aiteng mysticus | HQ168428 | HQ168441 | HQ168415 | HQ168453 | [32] | |
MICROHEDYLACEA | ||||||
Asperspina brambelli | ZSM Mol 20100576 | no data | JQ410991 | JQ410990 | JQ410924 | [25] |
Microhedyle glandulifera | ZSM Mol 20081019 | HQ168437 | HQ168449 | HQ168424 | HQ168461 | [32] |
Ganitus evelinae | ZSM Mol 20100328 | KF709312 | JF828044 | JF828045 | JF828034 | [25] |
Potamohedyle espinosai n. gen. n. sp. | Tantulum elegans | Pseudunela cornuta | Pseudunela espiritusanta | Strubellia paradoxa | Strubellia wawrai | Wallacellia siputbiru | Acochlidium amboinense | Acochlidium bayerfehlmanni | Acochlidium fijiense | |
---|---|---|---|---|---|---|---|---|---|---|
Data source | present study | [27,28] | [67,68] | [52] | [69,70] | [35] | [23] | [71]; § | [72,73,74]; § | [64,75]; § |
Accessory ganglia | - | + | - | - | - | - | - | ? | ? | ? |
Eyes | unpigmented | unpigmented | unpigmented | pigmented | pigmented | pigmented | pigmented | pigmented | pigmented | pigmented |
Osphradial ganglion | + | + | + | + | + | + | + | ? | ? | ? |
Gastro-oesophageal ganglia | - | + | + | + | + | + | + | ? | ? | ? |
Salivary pumps | + | + | - | - | - | + | + | ? | ? | ? |
Radula formula | 40 × 1.1.1 | 1.1.2 | 50 × 1.1.1. | 67 × 1.1.2 | 38 × 1.1.2 | 40–60 × 1.1.2 | 40 × 1.1.2 | 52 × 2.1.2 | 56 × 1.1.2 | 50 × 1.1.2 |
Digestive gland | sac-like | sac-like | sac-like | sac-like | sac-like | sac-like | sac-like | diverticular | diverticular | diverticular |
N° renopericardioducts | 1–3 | 1 | 1 | 1 | 1 | 1 | 1 | up to 25 | up to 42 | up to 8 |
Dorsal vessels | - | - | - | - | - | - | - | + | + | + |
Hermaphrodite genital system | sequential, protandric | sequential, protandric | simultaneous | simultaneous | sequential, protandric | sequential, protandric | simultaneous | ? | ? | sequential, protandric |
Internal vas deferens | + | + | + | + | - | - | + | + | + | + |
External sperm groove | - | - | - | - | + | + | - | - | - | - |
Penial stylet [µm] | - | - | ~600 | ~80 | - | - | ~1600 | ? | + | + |
Penial apical cuticle | thorn (40 µm), comb | - | - | - | thorn (50 µm) | thorn (150 µm) | comb | + | thorn | thorn |
Bulb underlying penis | - | - | - | - | - | - | + | - | - | - |
Basal finger stylet [µm] | 170–210 | - | ~110 | ~340 | ~600 | ~750 | ~200 | ? | + | + |
Grappling organ | - | - | - | - | - | - | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neusser, T.P.; Onay, A.; Pirchtner, M.; Jörger, K.M.; Diez, Y.L. Freshwater Slugs in the Caribbean: Rediscovery of Tantulidae (Acochlidimorpha, Panpulmonata) with the Description of Potamohedyle espinosai n. gen. n. sp. from Cuba. Hydrobiology 2024, 3, 279-309. https://doi.org/10.3390/hydrobiology3040018
Neusser TP, Onay A, Pirchtner M, Jörger KM, Diez YL. Freshwater Slugs in the Caribbean: Rediscovery of Tantulidae (Acochlidimorpha, Panpulmonata) with the Description of Potamohedyle espinosai n. gen. n. sp. from Cuba. Hydrobiology. 2024; 3(4):279-309. https://doi.org/10.3390/hydrobiology3040018
Chicago/Turabian StyleNeusser, Timea P., Anabel Onay, Mona Pirchtner, Katharina M. Jörger, and Yander L. Diez. 2024. "Freshwater Slugs in the Caribbean: Rediscovery of Tantulidae (Acochlidimorpha, Panpulmonata) with the Description of Potamohedyle espinosai n. gen. n. sp. from Cuba" Hydrobiology 3, no. 4: 279-309. https://doi.org/10.3390/hydrobiology3040018
APA StyleNeusser, T. P., Onay, A., Pirchtner, M., Jörger, K. M., & Diez, Y. L. (2024). Freshwater Slugs in the Caribbean: Rediscovery of Tantulidae (Acochlidimorpha, Panpulmonata) with the Description of Potamohedyle espinosai n. gen. n. sp. from Cuba. Hydrobiology, 3(4), 279-309. https://doi.org/10.3390/hydrobiology3040018