Biological Aspects of Sphyraena sphyraena (L., 1758) in the Central Mediterranean (E. Ionian Sea)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Data Collection
2.2. Data Analysis
2.2.1. Size Composition, Age and Growth
2.2.2. Otolith Morphometrics
2.2.3. Sex Ratio and Reproduction
3. Results
3.1. Length Distribution
3.2. Age and Growth
3.3. Weight–Length Relationship
3.4. Otolith Morphometrics
3.5. Sex Ratio and Reproduction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Froese, R.; Pauly, D. FishBase. 2024. Available online: www.fishbase.org (accessed on 30 September 2024).
- Schneider, W. FAO Species Identification Sheets for Fishery Purposes. Field Guide to the Commercial Marine Resources of the Gulf of Guinea. Prepared and Published with the Support of the FAO Regional Office for Africa; FAO: Rome, Italy, 1990; p. 268. [Google Scholar]
- Reiner, F. Catálogo dos Peixes do Arquipélago de Cabo Verde; IPIMAR: Lisbon, Portugal, 1996; 339p. [Google Scholar]
- Pastore, A. Sphyraena intermedia sp. nov. (Pisces: Sphyraenidae): A potential new species of barracuda identified from the central Mediterranean Sea. J. Mar. Biol. Assoc. 2009, 89, 1299–1303. [Google Scholar] [CrossRef]
- Kalogirou, S.; Mittermayer, F.; Pihl, L.; Wennhage, H. Feeding ecology of indigenous and non-indigenous fish species within the family Sphyraenidae. J. Fish Biol. 2012, 80, 2528–2548. [Google Scholar] [CrossRef] [PubMed]
- Villegas-Hernández, H.; Muñoz, M.; Lloret, J. Life-history traits of temperate and thermophilic barracudas (Teleostei: Sphyraenidae) in the context of sea warming in the Mediterranean Sea. J. Fish Biol. 2014, 84, 1940–1957. [Google Scholar] [CrossRef] [PubMed]
- Wadie, W.F.; Rizkalla, S.I. Fisheries for the genus Sphyraena (Perciformes, Sphyraenidae) in the south-eastern part of the Mediterranean Sea. Pak. J. Mar. Sci. 2001, 10, 21–34. [Google Scholar]
- Allam, S.M.; Faltas, S.N.; Ragheb, E. Age and growth of barracudas in the Egyptian Mediterranean waters. Egypt. J. Aquat. Res. 2004, 30, 281–289. [Google Scholar]
- Aggrey-Fynn, J.; Fynn-Korsah, S.; Appiah, N. Length-Weight relationships and food preference of two fishes in Ghana. West Afr. J. Appl. Ecol. 2013, 21, 87–96. [Google Scholar]
- Tuset, V.M.; Lombarte, A.; Assis, C.A. Otolith Atlas for the Western Mediterranean, North and Central Eastern Atlantic. Sci. Mar. 2008, 72, 7–198. [Google Scholar] [CrossRef]
- Bourehail, N.; Morat, F.; Lecomte-Finiger, R.; Kara, M.H. Using otolith shape analysis to distinguish barracudas Sphyraena sphyraena and Sphyraena viridensis from the Algerian coast. Cybium 2015, 39, 271–278. [Google Scholar] [CrossRef]
- Ferri, J.; Brzica, A. Age, Growth, and Utility of Otolith Morphometrics as Predictors of Age in the European Barracuda, Sphyraena sphyraena (Sphyraenidae): Preliminary Data. Fishes 2022, 7, 68. [Google Scholar] [CrossRef]
- Yedier, S. Otolith shape analysis and relationships between total length and otolith dimensions of European barracuda, Sphyraena sphyraena in the Mediterranean Sea. Iran. J. Fish. Sci. 2021, 20, 1080–1096. [Google Scholar]
- Allam, S.M.; Faltas, S.N.; Ragheb, E. Reproductive biology of Sphyraena species in the Egyptian Mediterranean waters off Alexandria. Egypt. J. Aquat. Res. 2004, 30, 255–270. [Google Scholar]
- Nikolsky, G.V. The Ecology of Fishes, 6th ed.; Academic Press: London, UK, 1963. [Google Scholar]
- ICES. Workshop on Age reading of Horse Mackerel, Mediterranean Horse Mackerel and Blue Jack Mackerel (Trachurus trachurus, T. mediterraneus and T. picturatus) (WKARHOM3). In Proceedings of the ICES CM 2018/EOSG:28, Livorno, Italy, 5–9 November 2018. [Google Scholar]
- NOAA (National Oceanic and Atmospheric Administration Fisheries). Available online: https://www.fisheries.noaa.gov/national/science-data/age-and-growth (accessed on 3 September 2024).
- Ponton, D. Is geometric morphometrics efficient for comparing otolith shape of different fish species? J. Morphol. 2006, 267, 750–757. [Google Scholar] [CrossRef]
- Pothin, K.; Gonzalez-Salas, C.; Chabanet, P.; Lecomte-Finiger, R. Distinction between Mulloidichthys flavolineatus juveniles from Reunion Island and Mauritius Island (south-west Indian Ocean) based on otolith morphometrics. J. Fish Biol. 2006, 69, 38–53. [Google Scholar] [CrossRef]
- Tuset, V.M.; Lozano, I.J.; Gonzĺez, J.A.; Pertusa, J.F.; García-Díaz, M.M. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). J. Appl. Ichthyol. 2003, 19, 88–93. [Google Scholar] [CrossRef]
- Bhattacharya, C.G. A simple method of resolution of a distribution into Gaussian components. Biometrics 1967, 23, 115–135. [Google Scholar] [CrossRef]
- Gayanilo, F.; Sparre, P.; Pauly, D. FAO-ICLARM Stock Assessment Tool II (FiSAT II) Revised Version—User’s Guide; FAO: Rome, Italy, 2005; Volume 8, 168p. [Google Scholar]
- Von Bertalanffy, L. A quantitative theory of organic growth (inquiries on growth laws II). Hum. Biol. 1938, 10, 181–213. [Google Scholar]
- Pauly, D.; Munro, J.L. Once more on the comparison of growth in fish and invertebrates. Fishbyte WorldFish Cent. 1984, 2, 1–21. [Google Scholar]
- Maddock, D.M.; Burton, M.P. Gross and histological of ovarian development and related condition changes in American plaice. J. Fish Biol. 1998, 53, 928–944. [Google Scholar] [CrossRef]
- Das, B.K.; Jha, D.N.; Sahu, S.K.; Yadav, A.K.; Raman, R.K.; Kartikeyan, M. Analysis and Interpretation of Weight-Length Data of Fish. In Concept Building in Fisheries Data Analysis; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Dikou, A. Weight–length relationship in fish populations reflects environmental regulation on growth. Hydrobiologia 2023, 850, 335–346. [Google Scholar] [CrossRef]
- Li, Y.; Feng, M.; Huang, L.; Zhang, P.; Wang, H.; Zhang, J.; Tian, Y.; Xu, J. Weight–Length Relationship Analysis Revealing the Impacts of Multiple Factors on Body Shape of Fish in China. Fishes 2023, 8, 269. [Google Scholar] [CrossRef]
- Hüssy, K. Otolith shape in juvenile cod (Gadus morhua): Ontogenetic and environmental effects. J. Exp. Mar. Bio. Ecol. 2008, 364, 35–41. [Google Scholar] [CrossRef]
- Assis, I.O.; da Silva, V.E.L.; Souto-Vieira, D. Ecomorphological patterns in otoliths of tropical fishes: Assessing trophic groups and depth strata preference by shape. Environ. Biol. Fish 2020, 103, 349–361. [Google Scholar] [CrossRef]
- Nonogaki, H.; Nelson, J.A.; Patterson, W.P. Dietary histories of herbivorous loricariid catfishes: Evidence from δ13C values of otoliths. Env. Biol Fish 2007, 78, 13–21. [Google Scholar] [CrossRef]
- Pérez, A.; Fabré, N.N. Spatial population structure of the Neotropical tiger catfish Pseudoplatystoma metaense: Skull and otolith shape variation. J. Fish Biol. 2013, 82, 1453–1468. [Google Scholar] [CrossRef]
- Volpedo, A.V.; Cirelli, A.F. Otolith chemical composition as a useful tool for sciaenid stock discrimination in the South Western Atlantic. Sci. Mar. 2006, 70, 325–334. [Google Scholar] [CrossRef]
- Lombarte, A.; Lleonart, J. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fishes 1993, 37, 297–306. [Google Scholar] [CrossRef]
Sphyraena sphyraena | |||||||||
---|---|---|---|---|---|---|---|---|---|
Length Classes (TL, cm) | Age Classes | ||||||||
0+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
16.0–16.9 | 1 | ||||||||
17.0–17.9 | |||||||||
18.0–18.9 | 1 | ||||||||
19.0–19.9 | |||||||||
20.0–20.9 | 3 | ||||||||
21.0–21.9 | 12 | ||||||||
22.0–22.9 | 5 | ||||||||
23.0–23.9 | 1 | ||||||||
24.0–24.9 | 1 | 1 | |||||||
25.0–25.9 | 4 | 2 | |||||||
26.0–26.9 | 8 | ||||||||
27.0–27.9 | 10 | ||||||||
28.0–28.9 | 11 | 5 | |||||||
29.0–29.9 | 7 | 13 | |||||||
30.0–30.9 | 14 | 12 | |||||||
31.0–31.9 | 8 | 10 | |||||||
32.0–32.9 | 24 | ||||||||
33.0–33.9 | 21 | ||||||||
34.0–34.9 | 13 | 1 | |||||||
35.0–35.9 | 14 | 5 | |||||||
36.0–36.9 | 15 | 3 | |||||||
37.0–37.9 | 19 | ||||||||
38.0–38.9 | 15 | ||||||||
39.0–39.9 | 6 | 5 | |||||||
40.0–40.9 | 13 | ||||||||
41.0–41.9 | 2 | ||||||||
42.0–42.9 | 7 | 1 | |||||||
43.0–43.9 | 2 | ||||||||
44.0–44.9 | 2 | ||||||||
45.0–45.9 | 1 | ||||||||
46.0–46.9 | 2 | ||||||||
47.0–47.9 | 1 | ||||||||
49.0–49.9 | 1 | ||||||||
N | 2 | 26 | 61 | 127 | 49 | 27 | 5 | 4 | 1 |
Mean TL (cm) | 17.45 | 22.40 | 28.84 | 32.89 | 37.74 | 40.90 | 43.68 | 46.53 | 49.70 |
Group | Mean TL (cm) | S.D. | S.I. |
---|---|---|---|
I | 22.23 | 1.17 | N.A. |
II | 27.73 | 1.15 | 2.27 |
III | 31.44 | 2.24 | 2.02 |
IV | 36.39 | 2.20 | 2.03 |
V | 41.04 | 1.60 | 2.04 |
VI | 46.56 | 0.80 | 2.15 |
N | L∞ ± S.E (cm) | k ± S.E (year−1) | t0 ± S.E (year) | Φ′ |
---|---|---|---|---|
302 | 63.65 ± 4.05 | 0.14 ± 0.02 | −2.01 ± 0.28 | 2.75 |
Otolith Morphometric Variable | Sphyraena sphyraena |
---|---|
RA (mm) | 5.29 ± 1.15 (2.84–7.73) |
OL (mm) | 10.10 ± 2.08 (5.61–14.69) |
OW (mm) | 3.16 ± 0.02 (1.99–4.28) |
OA (mm2) | 24.90 ± 0.41 (8.44–46.63) |
PE (mm) | 23.84 ± 4.55 (13.87–33.34) |
RD | 1.80 ± 0.20 (1.34–3.04) |
CI | 22.58 ± 2.46 (16.86–38.16) |
FF | 0.18 ± 0.02 (0.10–0.24) |
RC | 0.77 ± 0.03 (0.64–0.88) |
EL | 0.52 ± 0.03 (0.38–0.59) |
Variables | A | B | R2 | r | p-Value |
---|---|---|---|---|---|
TL/RA | 0.02 | 0.94 | 0.88 | 0.94 | <0.01 * |
TL/OL | 0.04 | 0.94 | 0.90 | 0.95 | <0.01 * |
TL/OW | 0.08 | 0.64 | 0.85 | 0.92 | <0.01 * |
TL/OA | 0.00 | 1.58 | 0.94 | 0.97 | <0.01 * |
TL/PE | 0.22 | 0.80 | 0.86 | 0.93 | <0.01 * |
TL/RD | 1.56 | 0.03 | 0.00 | 0.05 | 0.41 |
TL/CI | 19.57 | 0.03 | 0.00 | 0.05 | 0.41 |
TL/FF | 0.20 | −0.03 | 0.00 | −0.05 | 0.41 |
TL/RC | 0.77 | 0.00 | 0.00 | 0.00 | 0.99 |
TL/EL | 0.13 | 0.24 | 0.35 | 0.59 | <0.01 * |
Reference | Area | Sampling Years | N | TL Range (cm) | Age Groups (Range) | α | b | L∞ (cm) | k (year−1) | t0 (year) | Φ′ |
---|---|---|---|---|---|---|---|---|---|---|---|
[9] | SE Atlantic (Ghana) | 2011 | 75 | 7.2–26.1 | 0.00670 | 2.91 | - | - | - | - | |
[8] | Egyptian Mediterranean Waters | 1998–1999 | 627 | 22.0–51.0 | 1–8 | 0.00500 | 2.92 | 55.27 | 0.12 | −3.25 | 2.58 |
[12] | Adriatic Sea | 2020–2021 | 113 | 23.4–42.5 | 1–5 | - | - | 55.58 | 0.12 | −4.29 | 2.57 |
This study | E. Ionian Sea | 2022–2024 | 302 | 16.4–49.7 | 0+–8 | 0.01355 | 2.63 | 63.65 | 0.14 | −2.01 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikiforidou, V.; Anastasopoulou, A.; Xenikakis, V.; Mytilineou, C. Biological Aspects of Sphyraena sphyraena (L., 1758) in the Central Mediterranean (E. Ionian Sea). Hydrobiology 2024, 3, 364-377. https://doi.org/10.3390/hydrobiology3040023
Nikiforidou V, Anastasopoulou A, Xenikakis V, Mytilineou C. Biological Aspects of Sphyraena sphyraena (L., 1758) in the Central Mediterranean (E. Ionian Sea). Hydrobiology. 2024; 3(4):364-377. https://doi.org/10.3390/hydrobiology3040023
Chicago/Turabian StyleNikiforidou, Vasiliki, Aikaterini Anastasopoulou, Vasileios Xenikakis, and Chryssi Mytilineou. 2024. "Biological Aspects of Sphyraena sphyraena (L., 1758) in the Central Mediterranean (E. Ionian Sea)" Hydrobiology 3, no. 4: 364-377. https://doi.org/10.3390/hydrobiology3040023
APA StyleNikiforidou, V., Anastasopoulou, A., Xenikakis, V., & Mytilineou, C. (2024). Biological Aspects of Sphyraena sphyraena (L., 1758) in the Central Mediterranean (E. Ionian Sea). Hydrobiology, 3(4), 364-377. https://doi.org/10.3390/hydrobiology3040023