Next Issue
Volume 4, March
Previous Issue
Volume 3, September
 
 

Solar, Volume 3, Issue 4 (December 2023) – 7 articles

Cover Story (view full-size image): Sb2Se3-based solar cells have emerged as a formidable contender to kesterites, achieving remarkable efficiency gains close to 11% in a mere 10 years. These strides stem from refined fabrication methods, controlled grain orientation, innovative cell architecture, and defect passivation. Deposition techniques for rapid growth and vertical (Sb4Se6)n ribbon alignment are pivotal. Inorganic HTL and ETL (CeO2, TiO2, SnO2, NiOx, MoS3) show potentiality for optimizing interface bands in new solar cell designs. Doping Sb2Se3 with K, Cu, Sn, and Pb warrants further exploration to amplify carrier transport and device efficiency. Addressing passivation, surface processes, and post-deposition treatments remains vital for high-performance and commercially viable Sb2Se3 solar cells. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
21 pages, 7697 KiB  
Review
A Survey of CNN-Based Approaches for Crack Detection in Solar PV Modules: Current Trends and Future Directions
by Sharmarke Hassan and Mahmoud Dhimish
Solar 2023, 3(4), 663-683; https://doi.org/10.3390/solar3040036 - 1 Dec 2023
Cited by 4 | Viewed by 3130
Abstract
Detection of cracks in solar photovoltaic (PV) modules is crucial for optimal performance and long-term reliability. The development of convolutional neural networks (CNNs) has significantly improved crack detection, offering improved accuracy and efficiency over traditional methods. This paper presents a comprehensive review and [...] Read more.
Detection of cracks in solar photovoltaic (PV) modules is crucial for optimal performance and long-term reliability. The development of convolutional neural networks (CNNs) has significantly improved crack detection, offering improved accuracy and efficiency over traditional methods. This paper presents a comprehensive review and comparative analysis of CNN-based approaches for crack detection in solar PV modules. The review discusses various CNN architectures, including custom-designed networks and pre-trained models, as well as data-augmentation techniques and ensemble learning methods. Additionally, challenges related to limited dataset sizes, generalizability across different solar panels, interpretability of CNN models, and real-time detection are discussed. The review also identifies opportunities for future research, such as the need for larger and more diverse datasets, model interpretability, and optimized computational speed. Overall, this paper serves as a valuable resource for researchers and practitioners interested in using CNNs for crack detection in solar PV modules. Full article
Show Figures

Figure 1

13 pages, 2762 KiB  
Article
Assessing the Potential of Qatari House Roofs for Solar Panel Installations: A Feasibility Survey
by Ayed Banibaqash, Ziad Hunaiti and Maysam Abbod
Solar 2023, 3(4), 650-662; https://doi.org/10.3390/solar3040035 - 10 Nov 2023
Cited by 1 | Viewed by 2240
Abstract
Qatar’s ambitious Vision 2030 includes a major shift towards clean energy, and residential solar PV installation can be an obvious option, given its abundant sunlight and high power for residential cooling. Despite significant solar panel farm investment, there has been limited progress in [...] Read more.
Qatar’s ambitious Vision 2030 includes a major shift towards clean energy, and residential solar PV installation can be an obvious option, given its abundant sunlight and high power for residential cooling. Despite significant solar panel farm investment, there has been limited progress in deploying solar panels on home roofs, and further research is needed to identify the potential for such an initiative and its impact on the country’s move towards clean energy. This field survey assesses the potential for residential rooftop solar panel installation across Qatar, considering space availability, currently utilized space, remaining space, shading, and roof type. It also provided indications of potential obstacles and shading that might affect panel sunlight exposure. The results showed that there is significant potential for installing solar panels on Qatari homes, which could contribute to a considerable portion of the energy consumed by households during peak usage periods, particularly in the summer months. Moreover, excess energy generated could be exported to other countries with high demand during periods of low demand in Qatar. The study’s findings complement previous research efforts and provide insights for policymakers and stakeholders to develop strategies that endorse the vision for 2030 and promote the transition towards clean energy in Qatar. Full article
(This article belongs to the Topic Advances in Renewable Energy and Energy Storage)
Show Figures

Figure 1

12 pages, 1793 KiB  
Review
Overview of Energy Systems in Africa: A Comprehensive Review
by Michael M. Santos, Ana Teresa Vaz Ferreira and João C. G. Lanzinha
Solar 2023, 3(4), 638-649; https://doi.org/10.3390/solar3040034 - 8 Nov 2023
Cited by 1 | Viewed by 3236
Abstract
Africa has abundant solar resources but only 2% of its current capacity is generated from renewable sources. Photovoltaics (PV) offer sustainable, decentralized electricity access to meet development needs. This review synthesizes the recent literature on PV in Africa, with a focus on Mozambique. [...] Read more.
Africa has abundant solar resources but only 2% of its current capacity is generated from renewable sources. Photovoltaics (PV) offer sustainable, decentralized electricity access to meet development needs. This review synthesizes the recent literature on PV in Africa, with a focus on Mozambique. The 10 most cited studies highlight the optimization of technical components, such as storage and bifacial modules, and challenges in integrating large-scale PV. Case studies demonstrated Mozambique’s potential for PV applications in water heating, irrigation, and rural electrification. These benefits include reduced emissions and energy access. However, barriers, such as high costs, lack of infrastructure, and training, exist. While solar cookers are insufficient, thermal systems have unrealized potential. Mozambique’s urban and rural electrification rates are 57% and 13%, respectively, despite its energy resources. Targeted policies, financing, and community engagement are essential for promoting adoption. While PV can sustainably expand electricity access, coordinated efforts must address costs, infrastructure, maintenance, and social factors for successful implementation. Mozambique has immense solar potential, but strategic planning and support are critical to unlocking these benefits. This review provides insights into optimizing PV systems and policy frameworks for a clean and inclusive energy production future in Africa, to synthesize the 10 most cited studies on photovoltaic solar energy in Africa, and to deeply reflect upon the current energy needs in Mozambique, the benefits of employing PV and solar thermal systems, and the challenges of implementing such systems within the Mozambican context. Full article
Show Figures

Figure 1

20 pages, 6860 KiB  
Article
The Impact of Roof Material Profile and Pigmentation on the Performance of Photovoltaic Modules
by Nosakhare Aigbedion, Francis Njoka and Mathew Munji
Solar 2023, 3(4), 618-637; https://doi.org/10.3390/solar3040033 - 1 Nov 2023
Viewed by 2019
Abstract
This study combines simulations and experiments to study the heat interactions between various types of roofs and the photovoltaic (PV) modules installed on them. Specifically, the performance of PV modules on a clay roof was compared with their performance on two types of [...] Read more.
This study combines simulations and experiments to study the heat interactions between various types of roofs and the photovoltaic (PV) modules installed on them. Specifically, the performance of PV modules on a clay roof was compared with their performance on two types of metal roofs, a Box-profile metal roof and an Orientile metal roof, which differ in shape and geometry. Additionally, this study examined the cooling potential of three common metal roof pigments, iron (iii) oxide (Fe2O3), titanium dioxide (TiO2) and basalt, on roof-installed PV modules. An unpigmented roof was also studied for comparison purposes. Model development and simulation were implemented in COMSOL Multiphysics, and the simulation results were validated and compared with field experiments. The maximum open-circuit voltages of the PV installations were found to be 21.096 V for the clay roof, 20.945 V for the Box-profile metal roof and 20.718 V for the Orientile metal roof. This study revealed that the unpigmented roof had higher solar cell temperatures compared to the pigmented models, with temperature gains ranging from 2.2 °C to 2.71 °C. Moreover, the unpigmented model displayed significantly higher surface radiosity than the pigmented models. The performance output of the modules also varied depending on the metal roof sheet shape and geometry, with the Box-profile metal roof yielding better results than the Orientile metal roof sheet. These results indicate that a specific roof pigmentation may have a small impact on a single PV module, but it can become significant in a large array of modules, especially if cooling through natural convection is hindered. Full article
Show Figures

Figure 1

22 pages, 8760 KiB  
Article
Automating Quality Control of Irradiance Data with a Comprehensive Analysis for Southern Africa
by Francisca Muriel Daniel-Durandt and Arnold Johan Rix
Solar 2023, 3(4), 596-617; https://doi.org/10.3390/solar3040032 - 30 Oct 2023
Cited by 1 | Viewed by 1591
Abstract
A review of quality control for large irradiance datasets is applied as a case study for the Southern African Universities Radiometric Network (SAURAN) database. The quality control procedure is automated and applied to 24 stations from the database with a total of 848,189 [...] Read more.
A review of quality control for large irradiance datasets is applied as a case study for the Southern African Universities Radiometric Network (SAURAN) database. The quality control procedure is automated and applied to 24 stations from the database with a total of 848,189 hourly datapoints. From this, the individual station’s data quality is also analysed. The assessment validates the automated methodology without the need for a user-based review of the data. The SAURAN database can play a significant role in advancing solar and wind energy; however, the number of offline stations hinders this process. Data scarcity remains an obstacle to these goals, and therefore, recommendations are provided to address this. Recommendations regarding each site’s usability in time-series and discrete applications are made, which provides an overall indication of the SAURAN database’s irradiance measurement quality. Of the 24 measuring stations assessed, eight are recommended, 11 are recommended with cautious use, and five are recommended with extremely cautious use. These recommendations are based on multiple factors, such as whether a dataset has more than one full year of data or is missing minimal datapoints. Further, a study of the irradiance correlation between the stations was conducted. The results indicated groupings of different stations that showed highly correlated irradiance measurements and similar weather patterns. This is useful if a proposed renewable energy power plant, such as PV, falls within a cluster where the data from the SAURAN database can be used as a substitute if no data is available. SAURAN presents an opportunity for Southern Africa to increase its research outputs in solar and wind energy and lessen its dependency on fossil fuel-based energy production. Full article
Show Figures

Figure 1

30 pages, 4414 KiB  
Review
Advances on Sb2Se3 Solar Cells Fabricated by Physical Vapor Deposition Techniques
by Roberto Jakomin, Stefano Rampino, Giulia Spaggiari and Francesco Pattini
Solar 2023, 3(4), 566-595; https://doi.org/10.3390/solar3040031 - 12 Oct 2023
Cited by 2 | Viewed by 3049
Abstract
Sb2Se3, as an earth-abundant and low-toxic material, has emerged as one of the most interesting absorbers for clean renewable power generation technologies. Due to its optical properties, especially bandgap and absorption coefficient, the number of papers on Sb2 [...] Read more.
Sb2Se3, as an earth-abundant and low-toxic material, has emerged as one of the most interesting absorbers for clean renewable power generation technologies. Due to its optical properties, especially bandgap and absorption coefficient, the number of papers on Sb2Se3-based solar cells has been constantly increasing in the last ten years, and its power conversion efficiency has raised from 1% in 2014 to 10.57% in 2022. In this review, different Sb2Se3 solar cells’ fabrication technologies based on physical vapor deposition are described and correlated to the texture coefficient (ribbon orientation). Moreover, recent research works of the most promising solar cell configurations with different electron-transporting layers and hole-transporting layers are analyzed with a special emphasis on photovoltaic performances. Furthermore, different Sb2Se3 doping techniques are discussed. All these aspects are considered as new strategies to overcome the Sb2Se3 solar cell’s actual limitations. Full article
(This article belongs to the Topic Photovoltaic Materials and Devices)
Show Figures

Graphical abstract

22 pages, 7143 KiB  
Article
Numerical Modeling and Experimental Validation of Heat Transfer Characteristics in Small PTCs with Nonevacuated Receivers
by Amedeo Ebolese, Domenico Marano, Carlo Copeta, Agatino Bruno and Vincenzo Sabatelli
Solar 2023, 3(4), 544-565; https://doi.org/10.3390/solar3040030 - 12 Oct 2023
Viewed by 1699
Abstract
The development of small-sized parabolic trough collectors (PTCs) for processing heat production at medium temperatures (100–250 °C) represents an interesting approach to increase the utilization of solar thermal technologies in industrial applications. Thus, the development of simplified models to analyze and predict their [...] Read more.
The development of small-sized parabolic trough collectors (PTCs) for processing heat production at medium temperatures (100–250 °C) represents an interesting approach to increase the utilization of solar thermal technologies in industrial applications. Thus, the development of simplified models to analyze and predict their performance under different operative and climatic conditions is crucial for evaluating the application potential of this low-cost technology. In this paper, we present a numerical method that by combining three-dimensional finite element simulations (implemented with COMSOL Multiphysics software version 6.1) with a one-dimensional analysis (based on a MATLAB script) allows for the theoretical determination of the power output of a small-PTC with a nonevacuated tubular receiver operating at a medium temperature. The finite element model considers both the nonuniformity of the concentrated solar flux on the receiver tube (evaluated using Monte Carlo ray-tracing analysis) and the establishment of natural convection in the air gap between the glass envelope and absorber tube. The model calculates, for several values of direct normal irradiance (DNI) and inlet temperatures, the thermal power transferred to the heat transfer fluid (HTF) per unit length. The data are fitted using the multiple linear regression method, obtaining a function that is then used in a one-dimensional multi-nodal model to estimate the temperatures and the heat gains along the receiver tube. The outputs of the model are the outlet temperature and the total thermal power transferred to the HTF. In order to validate the developed methodology for the assessment of the heat transfer characteristics in the small-PTC with a nonevacuated receiver, an experiment at the ENEA Trisaia—Solar Thermal Collector Testing Laboratory was carried out. This work compares the theoretical data with those acquired through experimentation, obtaining a good agreement, with maximum differences of 0.2% and 3.6% for the outlet temperatures and the power outputs, respectively. Full article
(This article belongs to the Special Issue Recent Advances in Solar Thermal Energy)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop