New Decomposition Models for Hourly Direct Normal Irradiance Estimations for Southern Africa
Abstract
:1. Introduction
2. Model Development
- A localised decomposition model, which is site-specific;
- A clustered decomposition model, which encapsulates several sites to group an area based on their geographical location;
- A regional (Southern African) model, which encapsulates the data from the SAURAN network for developing a model specific to Southern Africa.
2.1. SAURAN Database
2.2. Comparison Metrics
2.3. Regression and Fitting
2.4. Software Development Tools
2.5. Baseline Models
- The relative air mass () is the dominant parameter affecting the relationship between and ;
- The physical model used to calculate will provide a physically based reference from which the changes in can be calculated (see Equation (20) below);
- Seasonal, annual and climate variations in the relationship between and are fully accounted for by parametric functions in that relate to , cloud cover, and PW vapour.
2.6. Decomposition Model Development Methodology
- Empirical formulae estimate , , pressure, , , and . From this, the assessment of available models aids in developing a new model.
- Data are split into intervals of 0.05 , starting from 0.175 to 0.875.
- is then modelled as Equation (34);
- The interval or intervals are then fitted against the function to determine Equation (34) to determine the a, b and c coefficients using a least squares regression analysis.
- From the -interval function, the -, - and - coefficients are fitted to a polynomial of Equation (35) with regards to .
3. Development of New Decomposition Models
- The localised decomposition models, developed using the training dataset of the SAURAN station;
- The clustered decomposition models, which are modelled on the training data of all the stations within the cluster, as discussed in Figure 5;
- The regional model is modelled on all the stations’ training data (Table 3).
3.1. Localised Decomposition Models
3.2. Cluster Decomposition Models
3.2.1. Cluster 1
3.2.2. Cluster 2
3.2.3. Cluster 3
3.2.4. Cluster 4
3.3. Regional Decomposition Model
4. Results
4.1. Testing and Validation Results
4.1.1. CSIR
4.1.2. CUT
4.1.3. FRH
4.1.4. GRT
4.1.5. HLO
4.1.6. ILA
4.1.7. KZH
4.1.8. KZW
4.1.9. MIN
4.1.10. NUST
4.1.11. RVD
4.1.12. SUN
4.1.13. UBG
4.1.14. UFS
4.1.15. UNV
4.1.16. UNZ
4.1.17. UPR
4.1.18. VAN
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Localised Decomposition Models
Appendix A.1. CSIR
Appendix A.2. CUT
Appendix A.3. FRH
Appendix A.4. GRT
Appendix A.5. HLO
Appendix A.6. ILA
Appendix A.7. KZH
Appendix A.8. KZW
Appendix A.9. MIN
Appendix A.10. NMU
Appendix A.11. NUST
Appendix A.12. RVD
Appendix A.13. SUN
Appendix A.14. UBG
Appendix A.15. UFS
Appendix A.16. UNV
Appendix A.17. UNZ
Appendix A.18. UPR
Appendix A.19. VAN
References
- Masters, G. Renewable and Efficient Electric Power Systems, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 186–245, 316–398. [Google Scholar]
- Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.; Remund, J. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications, 3rd ed.; NREL: Golden, CO, USA, 2021. [Google Scholar] [CrossRef]
- ISO 9060:2018; Solar Energy—Specification and Classification of Instruments for Measuring Hemispherical Solar and Direct Solar Radiation. ISO: Geneva, Switzerland, 2018.
- Lee, H.; Kim, S.Y.; Yun, C. Comparison of Solar Radiation Models to Estimate Direct Normal Irradiance for Korea. Energies 2017, 10, 594. [Google Scholar] [CrossRef]
- Bertrand, C.; Vanderveken, G.; Journée, M. Evaluation of decomposition models of various complexity to estimate the direct solar irradiance over Belgium. Renew. Energy 2015, 74, 618–626. [Google Scholar] [CrossRef]
- Liu, B.Y.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Yang, D.; Gueymard, C.A. Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance. Sol. Energy 2020, 208, 591–603. [Google Scholar] [CrossRef]
- Boland, J.; Huang, J.; Ridley, B. Decomposing global solar radiation into its direct and diffuse components. Renew. Sustain. Energy Rev. 2013, 28, 749–756. [Google Scholar] [CrossRef]
- Ridley, B.; Boland, J.; Lauret, P. Modelling of diffuse solar fraction with multiple predictors. Renew. Energy 2010, 35, 478–483. [Google Scholar] [CrossRef]
- Soares, J.; Oliveira, A.P.; Božnar, M.Z.; Mlakar, P.; Escobedo, J.F.; Machado, A.J. Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique. Appl. Energy 2004, 79, 201–214. [Google Scholar] [CrossRef]
- Talvitie, T.; Eldali, F.; Pinney, D. Predicting Solar Diffuse and Direct Components Using Deep Neural Networks. In Proceedings of the 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16–18 February 2021; pp. 1–5. [Google Scholar]
- Kalyanam, R.; Hoffmann, S. A Novel Approach to Enhance the Generalization Capability of the Hourly Solar Diffuse Horizontal Irradiance Models on Diverse Climates. Energies 2020, 13, 4868. [Google Scholar] [CrossRef]
- Bessafi, M.; Oree, V.; Khoodaruth, A.; Chabriat, J.P. Impact of decomposition and kriging models on the solar irradiance downscaling accuracy in regions with complex topography. Renew. Energy 2020, 162, 1992–2003. [Google Scholar] [CrossRef]
- Janjai, S.; Phaprom, P.; Wattan, R.; Masiri, I. Statistical models for estimating hourly diffuse solar radiation in different regions of Thailand. In Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010), Chiang Mai, Thailand, 2–4 June 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Orgill, J.; Hollands, K. Correlation equation for hourly diffuse radiation on a horizontal surface. Sol. Energy 1977, 19, 357–359. [Google Scholar] [CrossRef]
- Erbs, D.; Klein, S.; Duffie, J. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol. Energy 1982, 28, 293–302. [Google Scholar] [CrossRef]
- Louche, A.; Notton, G.; Poggi, P.; Simonnot, G. Correlations for direct normal and global horizontal irradiation on a French Mediterranean site. Sol. Energy 1991, 46, 261–266. [Google Scholar] [CrossRef]
- Maxwell, E. A Quasi-Physical Model for Converting Hourly Global Horizontal to Direct Normal Insolation; Technical Report; Solar Energy Research Institute: Golden, CO, USA, 1987. [Google Scholar]
- Perez, R.; Ineichen, P.; Maxwell, E.; Seals, R.; Zelenka, A. Dynamic global-to-direct irradiance conversion models. ASHRAE Trans. 1992, 98, 354–369. [Google Scholar]
- Lave, M.; Hayes, W.; Pohl, A.; Hansen, C.W. Evaluation of Global Horizontal Irradiance to Plane-of-Array Irradiance Models at Locations Across the United States. IEEE J. Photovoltaics 2015, 5, 597–606. [Google Scholar] [CrossRef]
- Lee, K.; Yoo, H.; Levermore, G.J. Quality control and estimation hourly solar irradiation on inclined surfaces in South Korea. Renew. Energy 2013, 57, 190–199. [Google Scholar] [CrossRef]
- Skartveit, A.; Olseth, J.A. A model for the diffuse fraction of hourly global radiation. Sol. Energy 1987, 38, 271–274. [Google Scholar] [CrossRef]
- Lam, J.C.; Li, D.H. Correlation between global solar radiation and its direct and diffuse components. Build. Environ. 1996, 31, 527–535. [Google Scholar] [CrossRef]
- Reindl, D.; Beckman, W.; Duffie, J. Diffuse Fraction Correlations. Sol. Energy 1990, 45, 1–7. [Google Scholar] [CrossRef]
- Yao, W.; Li, Z.; Xiu, T.; Lu, Y.; Li, X. New decomposition models to estimate hourly global solar radiation from the daily value. Sol. Energy 2015, 120, 87–99. [Google Scholar] [CrossRef]
- Khalil, S.A.; Shaffie, A. A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt. Renew. Sustain. Energy Rev. 2013, 27, 853–863. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Ruiz-Arias, J.A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. Energy 2016, 128, 1–30. [Google Scholar] [CrossRef]
- Laiti, L.; Giovannini, L.; Zardi, D.; Belluardo, G.; Moser, D. Estimating Hourly Beam and Diffuse Solar Radiation in an Alpine Valley: A Critical Assessment of Decomposition Models. Atmosphere 2018, 9, 117. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Escobedo, J.; Machado, A.; Soares, J. Correlation models of diffuse solar-radiation applied to the city of São Paulo, Brazil. Appl. Energy 2002, 71, 59–73. [Google Scholar] [CrossRef]
- Salazar, G.; Pedrosa Filho, M. Analysis of the Diffuse Fraction from Solar Radiation Values Measured in Argentina and Brazil Sites. In Proceedings of the Solar World Congress 2019, Santiago, Chile, 3–7 November 2020. [Google Scholar] [CrossRef]
- Chendo, M.; Maduekwe, A. Hourly global and diffuse radiation of Lagos, Nigeria—Correlation with some atmospheric parameters. Sol. Energy 1994, 52, 247–251. [Google Scholar] [CrossRef]
- Chikh, M.; Mahrane, A.; Haddadi, M. Modeling the Diffuse Part of the Global Solar Radiation in Algeria. Energy Procedia 2012, 18, 1068–1075. [Google Scholar] [CrossRef]
- Benchrifa, M.; Tadili, R.; Idrissi, A.; Essalhi, H.; Mechaqrane, A. Development of New Models for the Estimation of Hourly Components of Solar Radiation: Tests, Comparisons, and Application for the Generation of a Solar Database in Morocco. Int. J. Photoenergy 2021, 2021, 8897818. [Google Scholar] [CrossRef]
- Engerer, N. Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia. Sol. Energy 2015, 116, 215–237. [Google Scholar] [CrossRef]
- Tsubo, M.; Walker, S. Relationships between photosynthetically active radiation and clearness index at Bloemfontein, South Africa. Theor. Appl. Climatol. 2005, 80, 17–25. [Google Scholar] [CrossRef]
- Nijegorodov, N. Improved ashrae model to predict hourly and daily solar radiation components in Botswana, Namibia, and Zimbabwe. Renew. Energy 1996, 9, 1270–1273. [Google Scholar] [CrossRef]
- Mabasa, B.; Lysko, M.D.; Tazvinga, H.; Zwane, N.; Moloi, S.J. The Performance Assessment of Six Global Horizontal Irradiance Clear Sky Models in Six Climatological Regions in South Africa. Energies 2021, 14, 2583. [Google Scholar] [CrossRef]
- Mahachi, T. Energy Yield Analysis and Evaluation of Solar Irradiance Models for a Utility Scale Solar PV Plant in South Africa. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2016. [Google Scholar]
- Daniel, F.M.; Rix, A.J. The Evaluation of Decomposition Models Under Varying Weather Conditions for South Africa. In Proceedings of the Southern African Sustainable Energy Conference, Stellenbosch, South Africa, 17–19 November 2021; pp. 207–213. [Google Scholar]
- Daniel-Durandt, F.M.; Rix, A.J. Automating Quality Control of Irradiance Data with a Comprehensive Analysis for Southern Africa. Solar 2023, 3, 596–617. [Google Scholar] [CrossRef]
- SAURAN. 2022. Available online: https://sauran.ac.za/ (accessed on 23 June 2022).
- Walpole, R.; Myers, R.; Myers, S.; Ye, K. Probability & Statistics for Engineers & Scientists; Pearson Education Inc.: Boston, MA, USA, 2012. [Google Scholar]
- Anaconda Software Distribution. 2020Anaconda Inc. Available online: https://www.anaconda.com/ (accessed on 14 February 2020).
- Holmgren, W.; Hansen, C.; Mikofski, M. pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28–30 June 2010; Volume 445, pp. 51–56. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Mahachi, T.; Rix, A. Evaluation of irradiance decomposition and transposition models for a region in South Africa Investigating the sensitivity of various diffuse radiation models. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 24–27 October 2016; pp. 3064–3069. [Google Scholar] [CrossRef]
- Kasten, F.; Young, A.T. Revised optical air mass tables and approximation formula. Appl. Opt. 1989, 28, 4735–4738. [Google Scholar] [CrossRef] [PubMed]
- Farmer, W.; Rix, A.J. Mapping the spatial perturbations seen by the power system network due to intermittent renewable energy sources. In Proceedings of the Southern African Sustainable Energy Conference, Stellenbosch, South Africa, 17–19 November 2021; pp. 222–228. [Google Scholar]
- GHI Solar Map ©2017 Solargis. 2021. Available online: https://solargis.com/maps-and-gis-data/download/south-africa (accessed on 27 July 2022).
Name (Location) | Coordinates Lat (°S), Long (°E)) | Elevation (m) | |
---|---|---|---|
CSIR | CSIR Energy Centre (Pretoria, South Africa) | 25.747, 28.279 | 1400 |
CUT | Central University of Technology (Bloemfontein, South Africa) | 29.121, 26.216 | 1397 |
FRH | University of Fort Hare (Alice, South Africa) | 32.785, 26.845 | 540 |
GRT | Graaff-Reinet (Graaff-Reinet, South Africa) | 32.485, 24.586 | 660 |
HLO | Mariendal (Mariendal, South Africa) | 33.854, 18.824 | 178 |
ILA | Ilanga CSP Plant (Upington, South Africa) | 28.490, 21.520 | 884 |
KZH | University of KwaZulu-Natal Howard College (Durban, South Africa) | 29.871, 30.977 | 150 |
KZW | University of KwaZulu-Natal Westville (Durban, South Africa) | 29.817, 30.945 | 200 |
MIN | CRSES Mintek (Johannesburg, South Africa) | 26.089, 27.978 | 1521 |
NMU | Nelson Mandela University (Gqeberha, South Africa) | 34.009, 25.665 | 35 |
NUST | Namibian University of Science and Technology (Windhoek, Namibia) | 22.565, 17.075 | 1683 |
RVD | Richtersveld (Alexander Bay, South Africa) | 28.561, 16.761 | 141 |
SUN | Stellenbosch University (Stellenbosch, South Africa) | 33.935, 18.867 | 119 |
UBG | Gaborone (Gaborone, Botswana) | 24.661, 25.934 | 1014 |
UFS | University of Free State (Bloemfontein, South Africa) | 29.111, 26.185 | 1491 |
UNV | Venda (Vuwani, South Africa) | 23.131, 30.424 | 628 |
UNZ | University of Zululand (KwaDlangezwa, South Africa) | 28.853, 31.852 | 90 |
UPR | University of Pretoria (Pretoria, South Africa) | 25.753, 28.229 | 1410 |
VAN | Vanrhynsdorp (Vanrhynsdorp, South Africa) | 31.617, 18.738 | 130 |
Station | Dataset Size | Start Date | End Date | |
---|---|---|---|---|
Before QC | After QC | |||
CSIR | 46,434 | 26,539 | 11 March 2017 | 31 October 2022 |
CUT | 28,077 | 14,619 | 24 October 2017 | 31 October 2022 |
FRH | 40,895 | 22,233 | 7 February 2017 | 24 February 2022 |
GRT | 18,541 | 9774 | 27 November 2013 | 24 January 2016 |
HLO | 21,532 | 11,728 | 8 October 2015 | 27 October 2020 |
ILA | 8832 | 4676 | 13 October 2021 | 31 October 2022 |
KZH | 52,323 | 38,898 | 7 December 2015 | 07 August 2022 |
KZW | 20,291 | 10,756 | 7 December 2015 | 12 December 2018 |
MIN | 8185 | 4423 | 28 October 2021 | 31 October 2022 |
MRB | 4201 | 2462 | 17 March 2017 | 22 October 2019 |
NMU | 39,969 | 23,130 | 10 December 2015 | 30 September 2022 |
NUST | 52,004 | 27,401 | 26 July 2016 | 31 October 2022 |
PMB | 9773 | 5415 | 13 July 2021 | 31 October 2022 |
RVD | 63,716 | 34,457 | 27 March 2014 | 28 July 2021 |
SALT | 14,151 | 9908 | 21 July 2017 | 22 December 2020 |
STA | 40,256 | 21,751 | 7 December 2015 | 19 April 2021 |
SUN | 87,720 | 47,733 | 24 May 2010 | 31 October 2022 |
SUT | 1715 | 902 | 8 February 2017 | 20 April 2017 |
UBG | 38,917 | 20,646 | 26 November 2014 | 6 November 2020 |
UFS | 31,665 | 17,152 | 16 January 2014 | 30 August 2017 |
UNV | 59,100 | 33,144 | 23 April 2015 | 31 October 2022 |
UNZ | 56,399 | 30,373 | 11 July 2014 | 31 October 2022 |
UPR | 78,792 | 42,128 | 19 September 2013 | 31 October 2022 |
VAN | 24,701 | 13,234 | 26 August 2016 | 10 July 2019 |
Station | Mean 1 | Dataset 2 | Cluster Allocation | |||||
---|---|---|---|---|---|---|---|---|
GHI [W/m2] | DNI [W/m2] |
DHI [W/m2] | Total | Train | Validation | Test | ||
CSIR | 575 | 599 | 167 | 14,991 | 7495 | 3748 | 3748 | 2 |
CUT | 609 | 639 | 159 | 9161 | 4580 | 2290 | 2291 | 2 |
FRH | 544 | 583 | 151 | 12,224 | 6112 | 3056 | 3056 | 4 |
GRT | 573 | 624 | 151 | 5788 | 2894 | 1447 | 1447 | 4 |
HLO | 550 | 608 | 138 | 7061 | 3530 | 1765 | 1766 | 1 |
ILA | 589 | 680 | 131 | 2709 | 0 | 0 | 2709 | 1 |
KZH | 533 | 517 | 179 | 8782 | 4391 | 2195 | 2196 | 3 |
KZW | 531 | 511 | 184 | 5945 | 2972 | 1486 | 1487 | 3 |
NMU | 556 | 545 | 165 | 10,562 | 5281 | 2640 | 2641 | 4 |
NUST | 614 | 670 | 149 | 15,901 | 7950 | 3975 | 3976 | 1 |
MIN | 564 | 573 | 161 | 2761 | 0 | 0 | 2761 | 2 |
RVD | 630 | 729 | 125 | 19,624 | 9812 | 4906 | 4906 | 1 |
SUN | 556 | 645 | 133 | 28,508 | 14,254 | 7127 | 7127 | 1 |
UBG | 591 | 602 | 158 | 12,137 | 6068 | 3034 | 3035 | 2 |
UFS | 567 | 654 | 137 | 10,257 | 5128 | 2564 | 2565 | 2 |
UNV | 579 | 524 | 197 | 15,874 | 7937 | 3968 | 3969 | 2 |
UNZ | 530 | 528 | 176 | 10,055 | 5027 | 2514 | 2514 | 3 |
UPR | 568 | 609 | 163 | 28,089 | 14,044 | 7022 | 7023 | 2 |
VAN | 597 | 683 | 126 | 7860 | 3930 | 1965 | 1965 | 1 |
Mean 4 | |||
---|---|---|---|
GHI | DNI | DHI | |
[] | [] | [] | |
Cluster 1 | 592 | 669 | 135 |
Cluster 2 | 583 | 604 | 165 |
Cluster 3 | 534 | 523 | 178 |
Cluster 4 | 557 | 579 | 158 |
Dataset | Localised Model Outperforms Baseline Models | Cluster Model Outperforms Baseline ModelsBaseline Models | Regional Model Outperforms Baseline Models | |||
---|---|---|---|---|---|---|
Test | Validation | Test | Validation | Test | Validation | |
CSIR | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
CUT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
FRH | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
GRT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
HLO | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
ILA | - | ✓ | - | ✓ | - | ✓ |
KZH | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
KZW | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
MIN | - | ✓ | - | ✓ | - | ✓ |
NMU | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
NUST | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
RVD | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
SUN | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
UBG | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
UFS | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
UNV | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
UNZ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
UPR | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
VAN | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniel-Durandt, F.M.; Rix, A.J. New Decomposition Models for Hourly Direct Normal Irradiance Estimations for Southern Africa. Solar 2024, 4, 269-306. https://doi.org/10.3390/solar4020013
Daniel-Durandt FM, Rix AJ. New Decomposition Models for Hourly Direct Normal Irradiance Estimations for Southern Africa. Solar. 2024; 4(2):269-306. https://doi.org/10.3390/solar4020013
Chicago/Turabian StyleDaniel-Durandt, Francisca Muriel, and Arnold Johan Rix. 2024. "New Decomposition Models for Hourly Direct Normal Irradiance Estimations for Southern Africa" Solar 4, no. 2: 269-306. https://doi.org/10.3390/solar4020013
APA StyleDaniel-Durandt, F. M., & Rix, A. J. (2024). New Decomposition Models for Hourly Direct Normal Irradiance Estimations for Southern Africa. Solar, 4(2), 269-306. https://doi.org/10.3390/solar4020013