Energy Reconstruction and Calibration of the MicroBooNE LArTPC †
Abstract
:1. Introduction
2. Signal Processing
3. LArTPC Calibration and Energy Reconstruction
4. Detector-Related Uncertainties
5. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acciarri, R.; Adams, C.; An, R.; Andreopoulos, C.; Ankowski, A.M.; Antonello, M.; Asaadi, J.; Badgett, W.; Bagby, L.; Baibussinov, B.; et al. [MicroBooNE, LAr1-ND and ICARUS-WA104 Collaborations]. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. arXiv 2015, arXiv:1503.01520. [Google Scholar]
- Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; et al. [MiniBooNE Collaboration]. The Neutrino Flux prediction at MiniBooNE. Phys. Rev. D 2018, 79, 072002. [Google Scholar] [CrossRef] [Green Version]
- Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D.S.; Baller, B.; et al. [The NuMI Neutrino Beam]. Nucl. Instrum. Meth. A 2016, 806, 279. [Google Scholar] [CrossRef] [Green Version]
- Acciarri, R.; Adams, C.; An, R.; Aparicio, A.; Aponte, S.; Asaadi, J.; Auger, M.; Ayoub, N.; Bagby, L.; Baller, B.; et al. [MicroBooNE Collaboration]. Design and construction of the MicroBooNE detector. J. Instrum. 2017, 12, P02017. [Google Scholar] [CrossRef] [Green Version]
- Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; et al. [MicroBooNE Collaboration]. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC. J. Instrum. 2017, 12, P08003. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. [MicroBooNE Collaboration]. Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation. J. Instrum. 2018, 13, P07006. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Basset, M.; et al. [MicroBooNE Collaboration]. Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE. J. Instrum. 2018, 13, P07007. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Auger, M.; Balasubramanian, S.; Baller, B.; Barnes, C.; et al. [MicroBooNE Collaboration]. Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons. J. Instrum. 2020, 15, P03022. [Google Scholar] [CrossRef] [Green Version]
- Abratenko, P.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. [MicroBooNE Collaboration]. Measurement of space charge effects in the MicroBooNE LArTPC using cosmic muons. J. Instrum. 2020, 15, P12037. [Google Scholar] [CrossRef]
- Adams, C.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. [MicroBooNE Collaboration]. A method to determine the electric field of liquid argon time projection chambers using a UV laser system and its application in MicroBooNE. J. Instrum. 2020, 15, P07010. [Google Scholar] [CrossRef]
- Abratenko, P.; An, R.; Anthony, J.; Arellano, L.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. [MicroBooNE Collaboration]. Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE data. Eur. Phys. J. C 2022, 82, 454. [Google Scholar] [CrossRef]
- Abratenko, P.; An, R.; Anthony, J.; Arellano, L.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; et al. [MicroBooNE Collaboration] Search for an Excess of Electron Neutrino Interactions in MicroBooNE Using Multiple Final-State Topologies. Phys. Rev. Lett. 2022, 1128, 241801. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W. Energy Reconstruction and Calibration of the MicroBooNE LArTPC. Phys. Sci. Forum 2023, 8, 11. https://doi.org/10.3390/psf2023008011
Wu W. Energy Reconstruction and Calibration of the MicroBooNE LArTPC. Physical Sciences Forum. 2023; 8(1):11. https://doi.org/10.3390/psf2023008011
Chicago/Turabian StyleWu, Wanwei. 2023. "Energy Reconstruction and Calibration of the MicroBooNE LArTPC" Physical Sciences Forum 8, no. 1: 11. https://doi.org/10.3390/psf2023008011
APA StyleWu, W. (2023). Energy Reconstruction and Calibration of the MicroBooNE LArTPC. Physical Sciences Forum, 8(1), 11. https://doi.org/10.3390/psf2023008011