IsoDAR@Yemilab—A Definitive Search for Noble Neutrinos and Other BSM Physics †
Abstract
:1. Introduction
2. IsoDAR Physics—Noble Neutrinos and Beyond
3. IsoDAR Technology—High Power Cyclotron and Target
3.1. The 60 MeV/amu High Current Cyclotron (HCHC-60)
- Acceleration of 5 mA of . This molecular ion can be stripped of the binding electron after extraction, yielding 10 mA of protons, alleviating space charge [19].
- Vortex Motion. This collective beam dynamics effect only occurs in high-current isochronous cyclotrons. If the current and beam parameters are matched to the external focusing forces, the bunch exhibits rotation about its vertical axis in its local frame. This leads to a round steady-state distribution that facilitates clean extraction [16].
3.2. The Neutrino Production Target
4. Outlook and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IsoDAR | Isotope Decay-At-Rest |
HCHC-XX | High-Current Cyclotron-XX |
BSM | Beyond Standard Model |
RFQ | Radiofrequency Quadrupole |
LSC | Liquid Scintillator Counter |
IBD | Inverse Beta Decay |
NSI | Non-Standard Interactions |
PIC | Particle-In-Cell |
References
- Bungau, A.; Adelmann, A.; Alonso, J.R.; Barletta, W.; Barlow, R.; Bartoszek, L.; Calabretta, L.; Calanna, A.; Campo, D.; Conrad, J.M.; et al. Proposal for an Electron Antineutrino Disappearance Search Using High-Rate 8Li Production and Decay. Phys. Rev. Lett. 2012, 109, 141802. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.R.; Conrad, J.M.; Winklehner, D.; Spitz, J.; Bartoszek, L.; Adelmann, A.; Bang, K.M.; Barlow, R.; Bungau, A.; Calabretta, L.; et al. IsoDAR@Yemilab: A report on the technology, capabilities, and deployment. J. Instrum. 2022, 17, P09042. [Google Scholar] [CrossRef]
- Seo, S.H. Neutrino Telescope at Yemilab, Korea, 2019. arXiv 2019, arXiv:1903.05368. [Google Scholar] [CrossRef]
- Diaz, A.; Argüelles, C.A.; Collin, G.H.; Conrad, J.M.; Shaevitz, M.H. Where are we with light sterile neutrinos? Phys. Rep. 2020, 884, 1–59. [Google Scholar] [CrossRef]
- Inoue, K. Reactor Neutrino Experiments. Int. J. Mod. Phys. A 2004, 19, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, Y.; et al. Constraints on θ13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND. Phys. Rev. D 2011, 83, 052002. [Google Scholar] [CrossRef] [Green Version]
- Alonso, J.R.; Argüelles, C.A.; Bungau, A.; Conrad, J.M.; Dutta, B.; Kim, Y.D.; Marzec, E.; Mishins, D.; Seo, S.H.; Shaevitz, M.; et al. Neutrino physics opportunities with the IsoDAR source at Yemilab. Phys. Rev. D 2022, 105, 052009. [Google Scholar] [CrossRef]
- Waites, L.; Thompson, A.; Bungau, A.; Conrad, J.M.; Dutta, B.; Huang, W.C.; Kim, D.; Shaevitz, M.; Spitz, J. Axion-Like Particle Production at Beam Dump Experiments with Distinct Nuclear Excitation Lines. arXiv 2022, arXiv:2207.13659. [Google Scholar] [CrossRef]
- Cañas, B.C.; Garcés, E.A.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. The weak mixing angle from low energy neutrino measurements: A global update. Phys. Lett. B 2016, 761, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Foldenauer, P.; Jaeckel, J. Hunting All the Hidden Photons. J. High Energy Phys. 2018, 2018, 94. [Google Scholar] [CrossRef] [Green Version]
- Dutta, B.; Ghosh, S.; Kumar, J. A sub-GeV dark matter model. Phys. Rev. D 2019, 100, 075028. [Google Scholar] [CrossRef] [Green Version]
- Datta, A.; Dutta, B.; Liao, S.; Marfatia, D.; Strigari, L.E. Neutrino scattering and B anomalies from hidden sector portals. J. High Energy Phys. 2019, 2019, 91. [Google Scholar] [CrossRef] [Green Version]
- Delle Rose, L.; Khalil, S.; King, S.J.D.; Moretti, S.; Thabt, A.M. Atomki Anomaly in Family-Dependent U(1)′ Extension of the Standard Model. Phys. Rev. D 2019, 99, 055022. [Google Scholar] [CrossRef] [Green Version]
- Dutta, B.; Kim, D.; Thompson, A.; Thornton, R.T.; Van de Water, R.G. Solutions to the MiniBooNE Anomaly from New Physics in Charged Meson Decays. Phys. Rev. Lett. 2021, 129, 111803. [Google Scholar] [CrossRef]
- Moulai, M.H. Light, Unstable Sterile Neutrinos: Phenomenology, a Search in the IceCube Experiment, and a Global Picture. Ph.D. Thesis, MIT, Cambridge, MA, USA, 2021. [Google Scholar]
- Winklehner, D.; Conrad, J.M.; Schoen, D.; Yampolskaya, M.; Adelmann, A.; Mayani, S.; Muralikrishnan, S. Order-of-magnitude beam current improvement in compact cyclotrons. New J. Phys. 2022, 24, 023038. [Google Scholar] [CrossRef]
- Winklehner, D.; Bahng, J.; Calabretta, L.; Calanna, A.; Chakrabarti, A.; Conrad, J.; D’Agostino, G.; Dechoudhury, S.; Naik, V.; Waites, L.; et al. High intensity cyclotrons for neutrino physics. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 907, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Winklehner, D.; Adelmann, A.; Gsell, A.; Kaman, T.; Campo, D. Realistic simulations of a cyclotron spiral inflector within a particle-in-cell framework. Phys. Rev. Accel. Beams 2017, 20, 124201. [Google Scholar] [CrossRef] [Green Version]
- Winklehner, D.; Conrad, J.; Smolsky, J.; Waites, L. High intensity H2+ beams from a filament-driven multicusp ion source. arXiv 2020, arXiv:2008.12292. [Google Scholar]
- Winklehner, D.; Hamm, R.; Alonso, J.; Conrad, J.M.; Axani, S. Preliminary design of a RFQ direct injection scheme for the IsoDAR high intensity H2+ cyclotron. Rev. Sci. Instruments 2015, 87, 02B929. [Google Scholar] [CrossRef]
- Koser, D.; Waites, L.; Winklehner, D.; Frey, M.; Adelmann, A.; Conrad, J.M. Input Beam Matching and Beam Dynamics Design Optimizations of the IsoDAR RFQ Using Statistical and Machine Learning Techniques. Front. Phys. 2022, 10, 875889. [Google Scholar] [CrossRef]
- Bungau, A.; Alonso, J.; Bartoszek, L.; Conrad, J.; Shaevitz, M.; Spitz, J. Optimizing the 8Li yield for the IsoDAR Neutrino Experiment. J. Instrum. 2019, 14, P03001. [Google Scholar] [CrossRef] [Green Version]
- Bungau, A.; Alonso, J.; Bartoszek, L.; Conrad, J.M.; Dunton, E.; Shaevitz, M.H. The shielding design concept for the ISODAR neutrino target. J. Instrum. 2020, 15, T07002. [Google Scholar] [CrossRef]
- Sgouros, O.; Soukeras, V.; Pakou, A. Low energy proton induced reactions with weakly bound nuclei for application purposes. Eur. Phys. J. A 2021, 57, 125. [Google Scholar] [CrossRef]
- Alonso, J.R.; Barlow, R.; Conrad, J.M.; Waites, L.H. Medical isotope production with the IsoDAR cyclotron. Nat. Rev. Phys. 2019, 1, 533–535. [Google Scholar] [CrossRef] [Green Version]
- Waites, L.H.; Alonso, J.R.; Barlow, R.; Conrad, J.M. What is the potential impact of the IsoDAR cyclotron on radioisotope production: A review. Ejnmmi Radiopharm. Chem. 2020, 5, 6. [Google Scholar] [CrossRef]
- Jepeal, S.J.; Snead, L.; Hartwig, Z.S. Intermediate energy proton irradiation: Rapid, high-fidelity materials testing for fusion and fission energy systems. Mater. Des. 2021, 200, 109445. [Google Scholar] [CrossRef]
- Jepeal, S.J.; Danagoulian, A.; Kesler, L.A.; Korsun, D.A.; Lee, H.Y.; Schwartz, N.; Sorbom, B.N.; Velez Lopez, E.; Hartwig, Z.S. An accelerator facility for intermediate energy proton irradiation and testing of nuclear materials. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2021, 489, 41–49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winklehner, D. IsoDAR@Yemilab—A Definitive Search for Noble Neutrinos and Other BSM Physics †. Phys. Sci. Forum 2023, 8, 21. https://doi.org/10.3390/psf2023008021
Winklehner D. IsoDAR@Yemilab—A Definitive Search for Noble Neutrinos and Other BSM Physics †. Physical Sciences Forum. 2023; 8(1):21. https://doi.org/10.3390/psf2023008021
Chicago/Turabian StyleWinklehner, Daniel. 2023. "IsoDAR@Yemilab—A Definitive Search for Noble Neutrinos and Other BSM Physics †" Physical Sciences Forum 8, no. 1: 21. https://doi.org/10.3390/psf2023008021
APA StyleWinklehner, D. (2023). IsoDAR@Yemilab—A Definitive Search for Noble Neutrinos and Other BSM Physics †. Physical Sciences Forum, 8(1), 21. https://doi.org/10.3390/psf2023008021