Muons: A Gateway to New Physics †
Abstract
:1. Introduction
2. Muon Observables
2.1. Lepton Moments:
2.2. Lepton Flavour Universality
2.3. Muon cLFV
3. The Probing Power of Muon cLFV
3.1. Correlations Matter
3.2. The Role of CP Violation
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilenky, S.M.; Petcov, S.T. Massive Neutrinos and Neutrino Oscillations. Rev. Mod. Phys. 1987, 59, 671, Erratum in Rev. Mod. Phys. 1989, 61, 169; Erratum in Rev. Mod. Phys. 1988, 60, 575–575. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Antusch, S.; Babu, K.S.; Barenboim, G.; Chen, M.C.; Davidson, S.; de Gouvêa, A.; de Holanda, P.; Dutta, B.; Grossman, Y.; et al. Theory of neutrinos: A White paper. Rept. Prog. Phys. 2007, 70, 1757–1867. [Google Scholar] [CrossRef]
- Pospelov, M.; Ritz, A. Electric dipole moments as probes of new physics. Ann. Phys. 2005, 318, 119–169. [Google Scholar] [CrossRef] [Green Version]
- Abi, B.; Albahri, T.; Al-Kilani, S.; Allspach, D.; Alonzi, L.P.; Anastasi, A.; Anisenkov, A.; Azfar, F.; Badgley, K.; Baeßler, S.; et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef]
- Aoyama, T.; Asmussen, N.; Benayoun, M.; Bijnens, J.; Blum, T.; Bruno, M.; Caprini, I.; Calame, C.M.C.; Cè, M.; Colangelo, G.; et al. The anomalous magnetic moment of the muon in the Standard Model. Phys. Rep. 2020, 887, 1–166. [Google Scholar] [CrossRef]
- Borsanyi, S.; Fodor, Z.; Guenther, J.N.; Hoelbling, C.; Katz, S.D.; Lellouch, L.; Lippert, T.; Miura, K.; Parato, L.; Szabo, K.K.; et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature 2021, 593, 51–55. [Google Scholar] [CrossRef]
- Parker, R.H.; Yu, C.; Zhong, W.; Estey, B.; Müller, H. Measurement of the fine-structure constant as a test of the Standard Model. Science 2018, 360, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Zhong, W.; Estey, B.; Kwan, J.; Parker, R.H.; Müller, H. Atom-interferometry measurement of the fine structure constant. Ann. Phys. 2019, 531, 1800346. [Google Scholar] [CrossRef] [Green Version]
- Morel, L.; Yao, Z.; Cladé, P.; Guellati-Khélifa, S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 2020, 588, 61–65. [Google Scholar] [CrossRef]
- Zyla, P.A.; Particle Data Group. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Cirigliano, V.; Rosell, I. Two-loop effective theory analysis of pi (K)—> e anti-nu/e [gamma] branching ratios. Phys. Rev. Lett. 2007, 99, 231801. [Google Scholar] [CrossRef] [Green Version]
- Caria, G.; Urquijo, P.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D.M.; Atmacan, H.; Aushev, T.; Babu, V.; Badhrees, I.; et al. Measurement of R (D) and R (D*) with a Semileptonic Tagging Method. Phys. Rev. Lett. 2020, 124, 161803. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; Beteta, C.A.; Adeva, B.; Adinolfi, M.; Aidala, C.A.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; et al. Search for lepton-universality violation in B+→K+ℓ+ℓ− decays. Phys. Rev. Lett. 2019, 122, 191801. [Google Scholar] [CrossRef] [Green Version]
- LHCb Collaboration. Test of lepton universality with B0→K*0ℓ+ℓ− decays. arXiv 2017, arXiv:1705.05802.
- LHCb Collaboration. Measurement of lepton universality parameters in B+→K+ℓ+ℓ− and B0→K*0ℓ+ℓ− decays. arXiv 2022, arXiv:2212.09153. [Google Scholar]
- Glashow, S.L.; Guadagnoli, D.; Lane, K. Lepton flavor violation in B decays? Phys. Rev. Lett. 2015, 114, 091801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilenky, S.M.; Pontecorvo, B. Quark-lepton analogy and neutrino oscillations. Phys. Lett. B 1976, 61, 248. [Google Scholar] [CrossRef]
- Petcov, S.T. The Processes μ→e + γ,μ→e + e¯,ν′→ν + γ in the Weinberg-Salam Model with Neutrino Mixing. Sov. J. Nucl. Phys. 1977, 25, 340, Erratum in Sov. J. Nucl. Phys. 1977, 25, 698; Erratum in Sov. J. Nucl. Phys. 1977, 25, 1336. [Google Scholar]
- Bilenky, S.M.; Petcov, S.T.; Pontecorvo, B. Lepton Mixing, mu −> e + gamma Decay and Neutrino Oscillations. Phys. Lett. B 1977, 67, 309. [Google Scholar] [CrossRef]
- Kitano, R.; Koike, M.; Okada, Y. Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei. Phys. Rev. D 2007, 66, 096002, Erratum in Phys. Rev. D 2007, 76, 059902. [Google Scholar] [CrossRef] [Green Version]
- Domin, P.; Kovalenko, S.; Faessler, A.; Simkovic, F. Nuclear (mu−, e+) conversion mediated by Majorana neutrinos. Phys. Rev. C 2004, 70, 065501. [Google Scholar] [CrossRef] [Green Version]
- Geib, T.; Merle, A.; Zuber, K. μ− − e+ conversion in upcoming LFV experiments. Phys. Lett. B 2017, 764, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Geib, T.; Merle, A. μ− − e+ Conversion from Short-Range Operators. Phys. Rev. D 2017, 95, 055009. [Google Scholar] [CrossRef] [Green Version]
- Koike, M.; Kuno, Y.; Sato, J.; Yamanaka, M. A new idea to search for charged lepton flavor violation using a muonic atom. Phys. Rev. Lett. 2010, 105, 121601. [Google Scholar] [CrossRef] [Green Version]
- Allwicher, L.; Faroughy, D.A.; Jaffredo, F.; Sumensari, O.; Wilsch, F. Drell-Yan tails beyond the Standard Model. J. High Energy Phys. 2023, 3, 64. [Google Scholar] [CrossRef]
- MEG Collaboration. Search for the lepton flavour violating decay μ+→e+γ with the full dataset of the MEG experiment. Eur. Phys. J. C 2016, 76, 434. [Google Scholar] [CrossRef] [Green Version]
- MEG II Collaboration. The design of the MEG II experiment. Eur. Phys. J. C 2018, 78, 380. [Google Scholar] [CrossRef] [Green Version]
- Bellgardt, U.; Otter, G.; Eichler, R.; Felawka, L.; Niebuhr, C.; Walter, H.K.; Bertl, W.; Lordong, N.; Martino, J.; Egli, S.; et al. Search for the Decay mu+ —> e+ e+ e−. Nucl. Phys. B 1988, 299, 1–6. [Google Scholar] [CrossRef]
- Blondel, A.; Bravar, A.; Pohl, M.; Bachmann, S.; Berger, N.; Kiehn, M.; Schoning, A.; Wiedner, D.; Windelband, B.; Eckert, P.; et al. Research Proposal for an Experiment to Search for the Decay μ-> eee. arXiv 2013, arXiv:1301.6113. [Google Scholar]
- Bertl, W.; Engfer, R.; Hermes, E.A.; Kurz, G.; Kozlowski, T.; Kuth, J.; Otter, G.; Rosenbaum, F.; Ryskulov, N.M.; Van Der Schaaf, A.; et al. A search for μ − e conversion in muonic gold. Eur. Phys. J. C 2006, 47, 337–346. [Google Scholar] [CrossRef]
- Nguyen, T.M. Search for µ − e conversion with DeeMe experiment at J-PARC MLF. In Proceedings of the Flavor Physics & CP Violation 2015, Nagoya, Japan, 25–29 May 2015. [Google Scholar] [CrossRef] [Green Version]
- Krikler, B.E. An overview of the COMET experiment and its recent progress. arXiv 2015, arXiv:1512.08564. [Google Scholar]
- COMET Collaboration; Abramishvili, R.; Adamov, G.; Akhmetshin, R.R.; Allin, A.; Angélique, J.C.; Anishchik, V.; Aoki, M.; Aznabayev, D.; Bagaturia, I.; et al. COMET Phase-I technical design report. Prog. Theor. Exp. Phys. 2020, 2020, 033C01. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, L. Mu2e technical design report. arXiv 2015, arXiv:1501.05241. [Google Scholar]
- Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; Abreu, H.; et al. Search for the lepton flavor violating decay Z→eμ in pp collisions at TeV with the ATLAS detector. Phys. Rev. D 2014, 90, 072010. [Google Scholar] [CrossRef] [Green Version]
- Abada, A.; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Abelleira Fernandez, J.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; Agrawal, P.; et al. FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. Eur. Phys. J. C 2019, 79, 474. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.K.; Heinemann, B.; de Blas, J.; Cepeda, M.; Grojean, C.; Maltoni, F.; Nisati, A.; Petit, E.; Rattazzi, R.; Verkerke, W.; et al. Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020. arXiv 2019, arXiv:1910.11775. [Google Scholar]
- Hambye, T. CLFV and the origin of neutrino masses. Nucl. Phys. B Proc. Suppl. 2014, 248–250, 13–19. [Google Scholar] [CrossRef]
- Ma, E. Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 2006, 73, 077301. [Google Scholar] [CrossRef] [Green Version]
- Toma, T.; Vicente, A. Lepton flavor violation in the scotogenic model. J. High Energy Phys. 2014, 1, 160. [Google Scholar] [CrossRef] [Green Version]
- Abada, A.; Hati, C.; Marcano, X.; Teixeira, A.M. Interference effects in LNV and LFV semileptonic decays: The Majorana hypothesis. J. High Energy Phys. 2019, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Abada, A.; Kriewald, J.; Teixeira, A.M. On the role of leptonic CPV phases in cLFV observables. Eur. Phys. J. C 2021, 81, 1016. [Google Scholar] [CrossRef]
- Abada, A.; Kriewald, J.; Pinsard, E.; Rosauro-Alcaraz, S.; Teixeira, A.M. LFV Higgs and Z-boson decays: Leptonic CPV phases and CP asymmetries. Eur. Phys. J. C 2023, 83, 494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kriewald, J. Muons: A Gateway to New Physics. Phys. Sci. Forum 2023, 8, 28. https://doi.org/10.3390/psf2023008028
Kriewald J. Muons: A Gateway to New Physics. Physical Sciences Forum. 2023; 8(1):28. https://doi.org/10.3390/psf2023008028
Chicago/Turabian StyleKriewald, Jonathan. 2023. "Muons: A Gateway to New Physics" Physical Sciences Forum 8, no. 1: 28. https://doi.org/10.3390/psf2023008028
APA StyleKriewald, J. (2023). Muons: A Gateway to New Physics. Physical Sciences Forum, 8(1), 28. https://doi.org/10.3390/psf2023008028