Machine Learning Methods for Super-Kamiokande Solar Neutrino Classification †
Abstract
:1. Introduction
1.1. The Super-Kamiokande Experiment
1.2. Solar Neutrinos and the MSW Effect
1.3. Sources of Background
1.4. Multiple Scattering Goodness
1.5. Outline
2. Methods
2.1. Dataset Generation
2.2. Boosted Decision Tree
2.3. ResNet
2.4. Solfit
3. Results
3.1. Network Evaluation
3.2. BDT Implementation
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fukuda, S.; Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kasuga, S.; et al. The Super-Kamiokande detector. Nucl. Instr. and Meth. A 2003, 501, 418–462. [Google Scholar] [CrossRef]
- Elnimr, M.; Super-Kamiokande Collaboration. Low Energy 8B Solar Neutrinos with the Wideband Intelligent Trigger at Super-Kamiokande. J. Phys. Conf. Ser. 2017, 888, 012189. [Google Scholar] [CrossRef]
- Abe, K.; Super-Kamiokande Collaboration. Solar neutrino measurements in Super-Kamiokande-III. Phys. Rev. D 2011, 83, 052010. [Google Scholar] [CrossRef]
- Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Marti, L.; Miura, M.; Moriyama, S.; et al. Solar neutrino measurements in Super-Kamiokande-IV. Phys. Rev. D 2016, 94, 052010. [Google Scholar] [CrossRef]
- Mikheyev, S.P.; Smirnov, A.Y. Resonant amplification of ν oscillations in matter and solar-neutrino spectroscopy. Il Nuovo Cimento C 1986, 9, 17–26. [Google Scholar] [CrossRef]
- Koshio, Y. Overview of the solar neutrino observation. In Proceedings of the Neutrino 2022 Conference, Seoul, Republic of Korea, 2 June 2022. [Google Scholar]
- Nakano, Y.; Hokama, T.; Matsubara, M.; Miwa, M.; Nakahata, M.; Nakamura, T.; Sekiya, H.; Takeuchi, Y.; Tasaka, S.; Wendell, R.A.; et al. Measurement of the radon concentration in purified water in the Super-Kamiokande IV detector. Nucl. Instr. Meth. A 2003, 977, 164297. [Google Scholar] [CrossRef]
- Zhang, Y.; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; et al. First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV. Phys. Rev. D 2016, 93, 012004. [Google Scholar] [CrossRef]
- Roe, B.P.; Yang, H.J.; Zhu, J.; Liu, Y.; Stancu, I.; McGregor, G. Boosted decision trees as an alternative to artificial neural networks for particle identification. Nucl. Instr. Meth. A 2005, 543, 577–584. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Prouse, N. Machine Learning Techniques for Water Cherenkov Event Reconstruction. In Proceedings of the CAP Congress, Virtual, 7 June 2021. [Google Scholar]
Ekin Bin Range | MSG Bin Range | Total Events | Signal Interactions | ||
---|---|---|---|---|---|
BDT | Cuts | BDT | Cuts | ||
2.49–2.99 MeV | 0–0.35 | 8,004 | 498,341 | ||
2.49–2.99 MeV | 0.35–0.45 | 12,760 | 223,243 | ||
2.49–2.99 MeV | 0.45–1 | 17,110 | 111,957 | ||
2.99–3.49 MeV | 0–0.35 | 26,814 | 51,708 | ||
2.99–3.49 MeV | 0.35–0.45 | 31,125 | 28,701 | ||
2.99–3.49 MeV | 0.45–1 | 48,463 | 17,686 | ||
2.49–2.99 MeV | 0–1 | 37,874 | 833,541 | ||
2.99–3.49 MeV | 0–1 | 98,402 | 98,095 | ||
2.49–3.49 MeV | 0–1 | 136,276 | 931,636 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yankelevich, A. Machine Learning Methods for Super-Kamiokande Solar Neutrino Classification. Phys. Sci. Forum 2023, 8, 42. https://doi.org/10.3390/psf2023008042
Yankelevich A. Machine Learning Methods for Super-Kamiokande Solar Neutrino Classification. Physical Sciences Forum. 2023; 8(1):42. https://doi.org/10.3390/psf2023008042
Chicago/Turabian StyleYankelevich, Alejandro. 2023. "Machine Learning Methods for Super-Kamiokande Solar Neutrino Classification" Physical Sciences Forum 8, no. 1: 42. https://doi.org/10.3390/psf2023008042
APA StyleYankelevich, A. (2023). Machine Learning Methods for Super-Kamiokande Solar Neutrino Classification. Physical Sciences Forum, 8(1), 42. https://doi.org/10.3390/psf2023008042