Measurement of Atmospheric Muon Neutrino Disappearance Using CNN Reconstructions with IceCube †
Abstract
:1. Introduction
2. Neutrino Oscillations
3. Convolutional Neural Networks
4. Reconstruction
4.1. Training
4.2. Testing
4.3. Processing Speed
5. Disappearance Analysis
6. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T.C.; et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. D 2015, 91, 072004. [Google Scholar] [CrossRef]
- The IceCube Collaboration. Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore. Phys. Rev. Lett. 2018, 120, 071801. [Google Scholar] [CrossRef] [PubMed]
- Acero, M.A.; Adamson, P.; Aliaga, L.; Anfimov, N.; Antoshkin, A.; Arrieta-Diaz, E.; Asquith, L.; Aurisano, A.; Back, A.; Backhouse, C.; et al. The NOvA Collaboration, Improved measurement of neutrino oscillation parameters by the NOvA experiment. Phys. Rev. D 2022, 106, 032004. [Google Scholar] [CrossRef]
- Abe, K.; Akhlaq, N.; Akutsu, R.; Ali, A.; Alt, C.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Arihara, T.; Asada, Y.; et al. The T2K Collaboration, Improved constraints on neutrino mixing from the T2K experiment with 3.13 × 1021 protons on target. Phys. Rev. D 2021, 103, 112008. [Google Scholar] [CrossRef]
- Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Blake, A.; Cao, S.V.; Carroll, T.J.; Castromonte, C.M.; Chen, R.; Childress, S.; et al. The MINOS+ Collaboration, Precision constraints for three-flavor neutrino oscillations from the full MINOS+ and MINOS data set. Phys. Rev. Lett. 2020, 125, 131802. [Google Scholar] [CrossRef] [PubMed]
- An, F.P.; Bai, W.D.; Balantekin, A.B.; Bishai, M.; Blyth, S.; Cao, G.F.; Cao, J.; Chang, J.F.; Chang, Y.; Chen, H.S.; et al. The Daya Bay Collaboration, Precision Measurement of Reactor Antineutrino Oscillation at Kilometer-Scale Baselines by Daya Bay. Phys. Rev. Lett. 2023, 130, 161802. [Google Scholar] [CrossRef] [PubMed]
- Pontecorvo, B. Mesonium and anti-mesonium. Sov. Phys. JETP 1957, 6, 429. [Google Scholar]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the unified model of elementary particles. Prog. Theor. Phys. 1962, 28, 870. [Google Scholar] [CrossRef]
- Aurisano, A.; Radovic, A.; Rocco, D.; Himmel, A.; Messier, M.D.; Niner, E.; Pawloski, G.; Psihas, F.; Sousa, A.; Vahle, P. A Convolutional Neural Network Neutrino Event Classifier. J. Instrum. 2016, 11, P09001. [Google Scholar] [CrossRef]
- Huennefeld, M. Reconstruction Techniques in IceCube using Convolutional and Generative Neural Networks. Epj Web Conf. 2019, 207, 05005. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alves, A.A., Jr.; Amin, N.M.; Andeen, K.; et al. The IceCube Collaboration, Low Energy Event Reconstruction in IceCube DeepCore. Eur. Phys. J. C 2022, 82, 807. [Google Scholar] [CrossRef]
- The Super-Kamiokande Collaboration. Recent results and future prospects from Super-Kamiokande. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics (NEUTRINO2020), Online, 22 June–2 July 2020. [Google Scholar]
- Aya Ishihara for the IceCube Collaboration. The IceCube Upgrade-Design and Science Goals. arXiv 2019, arXiv:1908.09441. [Google Scholar]
Time per 3k Events (s) | Full Sample (1000 Cores) | |
---|---|---|
CNN on GPU | 21 | 13 min |
CNN on CPU | 45 | 7.5 h |
Likelihood-based on CPU | 120,000 | 46 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S., on behalf of the IceCube Collaboration. Measurement of Atmospheric Muon Neutrino Disappearance Using CNN Reconstructions with IceCube. Phys. Sci. Forum 2023, 8, 62. https://doi.org/10.3390/psf2023008062
Yu S on behalf of the IceCube Collaboration. Measurement of Atmospheric Muon Neutrino Disappearance Using CNN Reconstructions with IceCube. Physical Sciences Forum. 2023; 8(1):62. https://doi.org/10.3390/psf2023008062
Chicago/Turabian StyleYu, Shiqi on behalf of the IceCube Collaboration. 2023. "Measurement of Atmospheric Muon Neutrino Disappearance Using CNN Reconstructions with IceCube" Physical Sciences Forum 8, no. 1: 62. https://doi.org/10.3390/psf2023008062
APA StyleYu, S., on behalf of the IceCube Collaboration. (2023). Measurement of Atmospheric Muon Neutrino Disappearance Using CNN Reconstructions with IceCube. Physical Sciences Forum, 8(1), 62. https://doi.org/10.3390/psf2023008062