Icing Wind Tunnel and Erosion Field Tests of Superhydrophobic Surfaces Caused by Femtosecond Laser Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Laser Processing
2.3. Surface Structures
2.4. Wettability Acceleration Treatment
2.5. Icing Wind Tunnel
2.6. Field Tests
3. Results and Discussion
3.1. Icing Wind Tunnel
3.2. Erosion
4. Conclusions
- Femtosecond-laser-structured and petrol-treated stainless steel surfaces support the runback of impinging water droplets on an airfoil under glaze ice conditions.
- During the initial ice accretion, the petrol-treated samples showed a time delay of 50 s in ice bead build-up on the leading edge compared to the untreated reference surface. The accumulated ice was of a smoother shape, which should lead to improved aerodynamics during that phase.
- Long-term field tests demonstrated a high wear resistance of laser-generated structures on stainless steel, making them interesting for erosion shields in aviation and wind energy.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Muhammed, M.; Virk, M.S. Ice accretion on rotary-wing unmanned aerial vehicles—A review study. Aerospace 2023, 10, 261. [Google Scholar] [CrossRef]
- Kang, W.; Xue, Y.; Tian, H.; Wang, M.; Wang, X. The impact of icing on the airfoil on the lift-drag characteristics and maneuverability characteristics. Math. Probl. Eng. 2021, 2021, 5568740. [Google Scholar] [CrossRef]
- Goshima, N.; Maeda, T.; Kamada, Y.; Tada, T.; Hanamura, M.; Pham, H.H.; Iwai, K.; Fujiwara, A.; Hosomi, M. Study on influence of blade icing on operational characteristics of wind turbine at cold climate. J. Phys. Conf. Ser. 2020, 1618, 052021. [Google Scholar] [CrossRef]
- Abdelaal, A.; Nims, D.; Jones, K.; Sojoudi, H. Prediction of ice accumulation on bridge cables during freezing rain: A theoretical modeling and experimental study. Cold Reg. Sci. Technol. 2019, 164, 102782. [Google Scholar] [CrossRef]
- Karpen, N.; Diebald, S.; Dezitter, F.; Bonaccurso, E. Propeller-integrated airfoil heater system for small multirotor drones in icing environments: Anti-icing feasibility study. Cold Reg. Sci. Technol. 2022, 201, 103616. [Google Scholar] [CrossRef]
- Parent, O.; Ilinca, A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Goraj, Z. An overview of the deicing and antiicing technologies with respects for the future. In Proceedings of the 24th International Congress of the Aeronautical Sciences, Yokohama, Japan, 29 August–3 September 2004. [Google Scholar]
- Staples, C.A.; Boatman, R.J.; Cano, M.L. Ethylene glycol ethers: An environmental risk assessment. Chemosphere 1998, 36, 1585–1613. [Google Scholar] [CrossRef]
- Hu, H.; Liu, Y.; Gao, L. Wind Turbine Icing Physics and Anti-/De-Icing Technology; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-824532-3. [Google Scholar]
- Ramakrishna, D.M.; Viraraghavan, T. Environmental impact of chemical deicers—A Review. Water Air Soil Pollut. 2005, 166, 49–63. [Google Scholar] [CrossRef]
- Hochart, C.; Fortin, G.; Perron, J.; Ilinca, A. Wind turbine performance under icing conditions. Wind Energy 2008, 11, 319–333. [Google Scholar] [CrossRef]
- Homola, M.C.; Virk, M.S.; Nicklasson, P.J.; Sundsbø, P.A. Performance losses due to ice accretion for a 5 MW wind turbine. Wind Energy 2011, 15, 379–389. [Google Scholar]
- Seifert, H.; Wsterhellweg, A.; Kröning, J. Risk analysis of ice throw from wind turbines. Boreas 2003, 6, 2006-01. [Google Scholar]
- Morgan, C.; Bossanyi, E.; Seifert, M.H. Assessment of safety risks arising from wind turbine icing. Boreas 1998, 4, 113–121. [Google Scholar]
- Shu, L.; Li, H.; Hu, Q.; Jiang, X.; Qiu, G.; McClure, G.; Yang, H. Study of ice accretion feature and power characteristics of wind turbines at natural icing environment. Cold Reg. Sci. Technol. 2018, 147, 45–54. [Google Scholar] [CrossRef]
- Laakso, T.; Baring-Gould, I.; Durstewitz, M.; Horbaty, R.; Lacroix, A.; Peltola, E.; Ronsten, G.; Tallhaug, L.; Wallenius, T. State-of-the-Art of Wind Energy in Cold Climates; VTT: Espoo, Finland, 2010; Volume 152. (In English) [Google Scholar]
- Battisti, L.; Fedrizzi, R.; Brighenti, A.; Laakso, T. Sea ice and icing risk for offshore wind turbines. In Proceedings of the OWEMES, Citavecchia, Italy, 20–22 April 2006; pp. 20–22. [Google Scholar]
- Gao, L.; Tao, T.; Yongqian, L.; Hui, H. A field study of ice accretion and its effects on the power production of utility-scale wind turbines. Renew. Energy 2021, 167, 917–928. [Google Scholar] [CrossRef]
- Kjersem, H.A. Estimation of Production Losses Due to Icing on Wind Turbines at Kvitfjell Wind Farm. Master Thesis, Norwegian University of Life Sciences, Ås, Norway, 2019. [Google Scholar]
- Huang, X.; Tepylo, N.; Pommier-Budinger, V.; Budinger, M.; Bonaccurso, E.; Villedieu, P.; Bennani, L. A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications. Prog. Aerosp. Sci. 2019, 105, 74–97. [Google Scholar] [CrossRef]
- Slot, H.M.; Gelinck, E.R.M.; Rentrop, C.; van der Heide, E. Leading edge erosion of coated wind turbine blades: Review of coating life models. Renew. Energy 2015, 80, 837–848. [Google Scholar] [CrossRef]
- Soltis, J.; Palacios, J.; Eden, T.; Wolfe, D. Evaluation of Ice-Adhesion Strength on Erosion-Resistant Materials. AIAA J. 2015, 53, 1825–1835. [Google Scholar] [CrossRef]
- Milne, A.J.B.; Amirfazli, A. The Cassie equation: How it is meant to be used. Adv. Colloid Interface Sci. 2012, 170, 48–55. [Google Scholar] [CrossRef]
- Vercillo, V.; Tonnicchia, S.; Romano, J.-M.; García-Girón, A.; Aguilar-Morales, A.I.; Alamri, S.; Dimov, S.S.; Kunze, T.; Lasagni, A.F.; Bonaccurso, E. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications. Adv. Funct. Mater. 2020, 30, 1910268. [Google Scholar] [CrossRef]
- Fürbacher, R.; Liedl, G. Investigations on the wetting and deicing behavior of laser treated hydrophobic steel surfaces. In Proceedings of the Laser-Based Micro-Nanoprocessing XV, Online, 6–12 March 2021. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Tian, Y. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. Adv. Colloid Interface Sci. 2019, 533, 268–277. [Google Scholar] [CrossRef]
- Hauschwitz, P.; Jagdheesh, R.; Rostohar, D.; Brajer, J.; Kopeček, J.; Jiřícek, P.; Houdková, J.; Mocek, T. Hydrophilic to ultrahydrophobic transition of Al 7075 by affordable ns fiber laser and vacuum processing. Appl. Surf. Sci. 2020, 505, 144523. [Google Scholar] [CrossRef]
- Cardoso, J.T.; Garcia-Girón, A.; Romano, J.M.; Huerta-Murillo, D.; Jagdheesh, R.; Walker, M.; Dimov, S.S.; Ocaña, J.L. Influence of ambient conditions on the evolution of wettability properties of an IR-, ns-laser textured aluminium alloy. RSC Adv. 2017, 7, 39617–39627. [Google Scholar] [CrossRef]
- Ngo, C.-V.; Chun, D.-M. Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing. Appl. Surf. Sci. 2017, 409, 232–240. [Google Scholar] [CrossRef]
- Jagdheesh, R.; Diaz, M.; Marimuthu, S.; Ocana, J.L. Robust fabrication of µ-patterns with tunable and durable wetting properties: Hydrophilic to ultrahydrophobic via a vacuum process. J. Mater. Chem. 2017, 5, 7125–7136. [Google Scholar] [CrossRef]
- Fürbacher, R.; Liedl, G.; Otto, A. Fast transition from hydrophilic to superhydrophobic, icephobic properties of stainless steel samples after femtosecond laser processing and exposure to hydrocarbons. Procedia CIRP 2022, 111, 643–647. [Google Scholar] [CrossRef]
- Kadivar, M.; Tormey, D.; McGranaghan, G. A review on turbulent flow over rough surfaces: Fundamentals and theories. Int. J. Thermofluids 2021, 10, 100077. [Google Scholar] [CrossRef]
- Flack, K.A.; Schultz, M.P. Review of hydraulic roughness scales in the fully rough regime. J. Fluids Eng. 2010, 132, 041203. [Google Scholar] [CrossRef]
- Flack, K.A.; Schultz, M.P.; Barros, J.M. Skin friction measurements of systematically-varied roughness: Probing the role of roughness amplitude and skewness. Flow Turbul. Combust. 2019, 104, 317–329. [Google Scholar] [CrossRef]
- Leach, R.K. Surface topography characterization. In Fundamental Principles of Engineering Nanometrology, 2nd ed.; William Andrew Publishing: Norwich, UK, 2014; pp. 211–262. [Google Scholar]
- Prikhod’ko, A.A.; Alekseenko, S.V.; Chmovzh, V.V. Experimental investigation of the influence of the shape of ice outgrowths on the aerodynamic characteristics of the wing. J. Eng. Phys. Thermophys. 2019, 92, 486–492. [Google Scholar] [CrossRef]
- Jung, Y.S.; Baeder, J. Simulations for effect of surface roughness on wind turbine aerodynamic performance. J. Phys. Conf. Ser. 2020, 1452, 012055. [Google Scholar] [CrossRef]
- Bouhelal, A.; Smaïli, A.; Masson, C.; Guerri, O. Effects of surface roughness on aerodynamic performance of horizontal axis wind turbines. In Proceedings of the 25th Annual Conference of the Computational Fluid Dynamics Society of Canada, CFD2017-337, Windsor, ON, Canada, 18–21 June 2017. [Google Scholar]
- Tagawa, G.B.S.; Morency, F.; Beaugendre, H. CFD investigation on the maximum lift coefficient degradation of rough airfoils. AIMS Energy 2021, 9, 305–325. [Google Scholar] [CrossRef]
- Han, W.; Kim, J.; Kim, B. Study on correlation between wind turbine performance and ice accretion along a blade tip airfoil using CFD. J. Renew. Sustain. Energy 2018, 10, 023306. [Google Scholar] [CrossRef]
- Zeng, D.; Li, Y.; Huan, D.; Liu, H.; Luo, H.; Cui, Y.; Zhu, C.; Wang, J. Robust epoxy-modified superhydrophobic coating for aircraft anti-icing systems. Coll. Surf. A Phys. Eng. Asp. 2021, 628, 127377. [Google Scholar] [CrossRef]
- Puffing, R.F.A.; Peciar, M.; Hassler, W. Instrumentation of an icing wind tunnel based on SAE standards. Sci. Proc. Fac. Mech. Eng. STU 2013, 21, 37–43. [Google Scholar] [CrossRef]
- Thomareis, N.; Papadakis, G. Effect of trailing edge shape on the separated flow characteristics around an airfoil at low Reynolds number: A numerical study. Phys. Fluids 2017, 29, 014101. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Zhao, W.; Sun, S.; Sun, C.; Guo, C. Numerical simulation on vortex shedding from a hydrofoil in steady flow. J. Mar. Sci. Eng. 2020, 8, 195. [Google Scholar] [CrossRef]
- Fortin, G.; Ilinca, A.; Laforte, J.-L.; Brandi, V. New roughness computation method and geometric accretion model for airfoil icing. J. Aircr. 2004, 41, 119–127. [Google Scholar] [CrossRef]
- Airworthiness standards: Transport category airplanes. In Code of Federal Regulations, Title 14, Chapter I, Subchapter C, Part 25, Appendix C, 1-1-23 ed.; Federal Aviation Administration: Washington, DC, USA, 2023.
- Kozomara, D.; Amon, J.; Puffing, R.; Neubauer, T.; Schweighart, S.; Diebald, S.; Rapf, A.; Moser, R.; Breitfuss, W. Experimental investigation of UAS rotors and ice protection systems in appendix C icing conditions. In Proceedings of the International Conference on Icing of Aircraft, Engines, and Structures, Vienna, Austria, 20–23 June 2023; SAE Technical Paper Series. [Google Scholar] [CrossRef]
- Kozomara, D.; Neubauer, T.; Puffing, R.; Bednar, I.; Breitfuss, W. Experimental investigation on the effects of icing on multicopter UAS operation. In Proceedings of the AIAA AVIATION, Virtual, 2–6 August 2021. [Google Scholar] [CrossRef]
- Liersch, L.; Michael, J. Investigation of the impact of rain and particle erosion on rotor blade aerodynamics with an erosion test facility to enhancing the rotor blade performance and durability. J. Phys. Conf. Ser. 2014, 524, 012023. [Google Scholar] [CrossRef]
- Fuerbacher, R.; Liedl, G.; Murzin, S.P. Experimental study of spatial frequency transition of laser induced periodic surface structures. J. Phys. Conf. Ser. 2021, 1745, 012017. [Google Scholar] [CrossRef]
- Lee, G.M.C. The erosion resistance of plain carbon steels under water droplet impact conditions. Wear 1990, 141, 185–201. [Google Scholar] [CrossRef]
Sample ID | Structure Type | Wettability Treatment | Treatment Duration (h) | Laser Fluence (J/cm2) | Spot Diameter (µm) | Hatch (µm) | Number of Laser Pulses |
---|---|---|---|---|---|---|---|
IWT#1 | LIPSS | Vacuum | 4 | 0.6 | 200 | 150 | 25 |
IWT#2 | Grid | Vacuum | 4 | 15 | 50 | 100 | 25 |
IWT#3 | Dimple | Vacuum | 4 | 20 | 50 | 50 | 40 |
IWT#4 | Triangle | Vacuum | 4 | 10 | 50 | 100 | 25 |
IWT#5 | LIPSS | Petrol, immersion | 4 | 0.6 | 200 | 150 | 25 |
IWT#6 | Grid | Petrol, immersion | 4 | 15 | 50 | 100 | 25 |
IWT#7 | Dimple | Petrol, immersion | 4 | 20 | 50 | 50 | 40 |
IWT#8 | Triangle | Petrol, immersion | 4 | 10 | 50 | 100 | 25 |
E#1 | LIPSS | - | - | 0.6 | 200 | 150 | 25 |
E#2 | Grid | - | - | 15 | 50 | 100 | 25 |
E#3 | Dimple | - | - | 20 | 50 | 50 | 20 |
Ice Type | Temperature (°C) | Air Speed (m/s) | MVD * (µm) | LWC ** (gm−3) @ −10 °C, 15 m/s | Icing Cycle (s) |
---|---|---|---|---|---|
Glaze | −10 | 25 | 42 | 5.1 | 180 |
Sample ID | Structure Type | Wettability Treatment | SCA before IWT Tests (°) | SCA after IWT Tests (°) | IWT Performance | ||
---|---|---|---|---|---|---|---|
Initial Water Runback | Delay Time (s) | Ice Accumulation after 180 s | |||||
IWT#1 | LIPSS | Vacuum | 151.3 ± 0.9 | 101.9 ± 16.8 | ~ | 0 | − |
IWT#2 | Grid | Vacuum | 157.0 ± 2.5 | 78.2 ± 6.3 | ~ | 0 | − |
IWT#3 | Dimple | Vacuum | 142.7 ± 4.7 | 61.9 ± 6.1 | ~ | 0 | − |
IWT#4 | Triangle | Vacuum | 158.7 ± 1.6 | 109.8 ± 7.9 | ~ | 0 | − |
IWT#5 | LIPSS | Petrol immersion | 131.9 ± 4.2 | 132.4 ± 14.3 | + | 0 | − |
IWT#6 | Grid | Petrol immersion | 148.5 ± 6.3 | 93.2 ± 2.3 | + | 50 | − |
IWT#7 | Dimple | Petrol immersion | 153.9 ± 2.3 | 84.0 ± 17.7 | + | 50 | − |
IWT#8 | Triangle | Petrol immersion | 144.2 ± 3.6 | 72.1 ± 20.2 | + | 50 | − |
Reference | - | - | 94.2 ± 5.1 | 83.3 ± 12.6 |
Structure Type | Sq (nm) | Ssk | kS (µm) | kS/c |
---|---|---|---|---|
LIPSS | 82.2 | 0.18 | 0.46 | 2.28 × 10−6 |
Grid | 1816.4 | −1.39 | 6.19 | 3.10 × 10−5 |
Dimple | 3190.6 | 0.07 | 15.51 | 7.75 × 10−5 |
Triangle | 2065.7 | −1.28 | 6.54 | 3.27 × 10−5 |
Sample ID | Structure Type | Cut-off, λc (nm) | Sa (nm) | Sq (nm) | Sz (µm) | Sdr (%) | Sk (µm) |
---|---|---|---|---|---|---|---|
E#1 Reference | LIPSS | 75 | 64.4 | 82.2 | 0.90 | 0.08 | 0.21 |
E#1 | LIPSS | 75 | 109.8 | 138.0 | 2.24 | 0.14 | 0.30 |
± | 70.5% | 68.0% | 149.0% | 61.4% | 45.6% | ||
E#2 Reference | Grid | 150 | 1362.9 | 1816.4 | 14.32 | 25.00 | 3.55 |
E#2 | Grid | 150 | 1049.8 | 1301.2 | 9.93 | 7.66 | 3.08 |
± | −23.0% | −28.4% | −30.7% | −69.3% | −13.2% | ||
E#3 Reference | Dimple | 300 | 2670.8 | 3190.6 | 19.26 | 136.53 | 9.66 |
E#3 | Dimple | 300 | 2448.9 | 2933.4 | 22.68 | 66.25 | 8.28 |
± | −8.3% | −8.1% | 17.8% | −51.5% | −14.4% | ||
E#4 Reference | Triangle | 150 | 1604.4 | 2065.7 | 16.00 | 30.42 | 4.22 |
E#4 | Triangle | 150 | 1304.0 | 1685.7 | 18.95 | 19.51 | 3.06 |
± | −18.7% | −18.4% | 18.4% | −35.9% | −27.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fürbacher, R.; Liedl, G.; Grünsteidl, G.; Otto, A. Icing Wind Tunnel and Erosion Field Tests of Superhydrophobic Surfaces Caused by Femtosecond Laser Processing. Wind 2024, 4, 155-171. https://doi.org/10.3390/wind4020008
Fürbacher R, Liedl G, Grünsteidl G, Otto A. Icing Wind Tunnel and Erosion Field Tests of Superhydrophobic Surfaces Caused by Femtosecond Laser Processing. Wind. 2024; 4(2):155-171. https://doi.org/10.3390/wind4020008
Chicago/Turabian StyleFürbacher, Roland, Gerhard Liedl, Gabriel Grünsteidl, and Andreas Otto. 2024. "Icing Wind Tunnel and Erosion Field Tests of Superhydrophobic Surfaces Caused by Femtosecond Laser Processing" Wind 4, no. 2: 155-171. https://doi.org/10.3390/wind4020008
APA StyleFürbacher, R., Liedl, G., Grünsteidl, G., & Otto, A. (2024). Icing Wind Tunnel and Erosion Field Tests of Superhydrophobic Surfaces Caused by Femtosecond Laser Processing. Wind, 4(2), 155-171. https://doi.org/10.3390/wind4020008