Limitations of Standard Rain Erosion Tests for Wind Turbine Leading Edge Protection Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. RET Procedure
2.2. RET Analysis
2.3. Dynamic Mechanical Analysis (DMA)
3. RET DoE 1
3.1. Method
3.2. Results and Discussion
4. RET DoE 2
4.1. Method
- High-cycle fatigue: 2.53 mm droplet size 1000 rpm, 45 L/h. Impact frequency = 32,017 m−2 s−1.
- Low-cycle fatigue: 2.38 mm droplet size, 1000 rpm, 65 L/h. Impact frequency = 46,245 m−2 s−1.
4.2. Results and Discussion
4.2.1. Sequencing
4.2.2. Recovery
4.2.3. Droplet Size
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keegan, M.; Nash, D.; Stack, M. On erosion issues associated with the leading edge of wind turbine blades. J. Phys. D Appl. Phys. 2013, 46, 383001. [Google Scholar] [CrossRef]
- Herring, R.; Dyer, K.; Martin, F.; Ward, C. The increasing importance of leading edge erosion and a review of existing protection solutions. Renew. Sustain. Energy Rev. 2019, 115, 109382. [Google Scholar] [CrossRef]
- Mendez, B.; Pires, O. Impact of high size distributued roughness elements on wind turbine performance. J. Phys. Conf. Ser. 2022, 2265, 032027. [Google Scholar] [CrossRef]
- Gaudern, N. A practical study of the aerodynamic impact of wind turbine blade leading edge erosion. J. Phys. Conf. Ser. 2014, 524, 012031. [Google Scholar] [CrossRef]
- Bak, C.; Guanna, M.; Olsen, A.; Kruse, E. What is the critical height of leading edge roughness for aerodynamics? J. Phys. Conf. Ser. 2022, 2265, 022023. [Google Scholar] [CrossRef]
- Maniaci, D.; Westergaard, C.; Hsieh, A.; Paquette, J. Uncertainty Quantification of Leading Edge Erosion Impacts on Wind Turbine Performance. J. Phys. Conf. Ser. 2020, 1618, 052082. [Google Scholar] [CrossRef]
- Maniaci, D.; MacDonald, H.; Paquette, J.; Clarke, R. Leading Edge Erosion Classification System; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2022. [Google Scholar]
- Jensen-Johansen, N. Test Methods for Evaluating Rain Erosion Performance of Wind Turbine Blade Leading Edge Protection Systems; Technical University of Denmark: Kongens Lyngby, Denmark, 2020. [Google Scholar]
- DNV-RP-0573; Evaluation of Erosion and Delamination for Leading Edge Protection Systems of Rotor Blades. DNVGL: Bærum, Norway, 2021.
- DNV-RP-0171; Testing of Rotor Blade Erosion Protection Systems. DNVGL: Bærum, Norway, 2021.
- ASTM-G73; Standard Test Method for Liquid Impingment Using Rotating Apparatus. ASTM: West Conshohocken, PA, USA, 2021.
- ISO/TS 19392-2; Paints and Varnishes—Coating Systems for Wind-Turbine Rotor Blades—Part 2: Determination and Evaluation of Resistance to Rain Erosion Using Rotating Arm. ISO: Geneva, Switzerland, 2018.
- Schmitt, G. Flight Test-Whirling Arm Correlation of Rain Erosion Resistance of Materials; AFML: Dayton, Ohio, USA, 1968. [Google Scholar]
- Eisenberg, D.; Lausten, S.; Stege, J. Wind turbine blade coating leading edge erosion model: Development and validation. Wind Energy 2017, 21, 942–951. [Google Scholar] [CrossRef]
- O’Carroll, A. Correlation of mechanical properties to rain erosion resistance of polymeric materials. Master’s Thesis, University of Limerick, Limerick, Ireland, November 2018. [Google Scholar]
- Imad, O.; Ward, C.; Hamerton, I.; Dyer, K. Engineering Viscoelastic Properties in Polyurethane Coatings to Reduce Erosion Risks in Wind Turbine Blades. Sampe J. 2021, 57, 16–24. [Google Scholar]
- Jones, S.; Rehfield, N.; Schreiner, C.; Dyer, K. The Development of a Novel Thin Film Test Method to Evaluate the Rain Erosion Resistance of Polyaspartate-Based Leading Edge Protection Coatings. Coatings 2023, 13, 1849. [Google Scholar] [CrossRef]
- Herring, R.; Dyer, K.; Howkins, P.; Ward, C. Characterisation of the offshore precipitation environment to help combat leading edge erosion of wind turbine blades. Wind. Energy Sci. 2020, 5, 1399–1409. [Google Scholar] [CrossRef]
- Letson, F.; Pryor, S.C. From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade Leading-Edge Erosion. Energies 2023, 16, 3906. [Google Scholar] [CrossRef]
- Martel, J.L.; Brisette, F.P.; Lucas-Picher, P.; Troin, M.; Arsenault, R. Climate Change and Rainfall Intensity-Duration-Frequency Curves: Overview of Science and Guidelines for Adaptation. J. Hydrol. Eng. 2021, 26, 03121001. [Google Scholar] [CrossRef]
- Wang, X.; Huang, G.; Liu, J. Projected increases in intensity and frequency of rainfall extremes through a regional climate modelling approach. J. Geophys. Res. Atmos. 2014, 119, 13271–13286. [Google Scholar] [CrossRef]
- Global Offshore Wind Report; World Forum Offshore Wind, Global Wind Energy Council: Brussels, Belgium, 2024.
- Vinhoza, A.; Lucena, A.; Rochedo, P.; Schaeffer, R. Brazil’s offshore wind cost potential and supply curve. Sustain. Energy Technol. Assess. 2023, 57, 103151. [Google Scholar] [CrossRef]
- Best, A.C. The size distribution of raindrops. Q. J. R. Meteorol. Soc. 1950, 76, 16–36. [Google Scholar] [CrossRef]
- Barfknecht, N.; von Terzi, D. Drop-size-dependent effects in leading edge rain erosion and their impact for erosion-safe mode operation. Wind. Energy Sci. 2024. Available online: https://wes.copernicus.org/preprints/wes-2024-33/ (accessed on 12 November 2024).
- Verma, A.S.; Castro, S.; Jiang, Z.; Teuwen, J. Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditions: A parametric study. Compos. Struct. 2020, 241, 112096. [Google Scholar] [CrossRef]
- Hoksbergen, T.; Akkerman, R.; Baran, I. Rain droplet impact stress analysis for leading edge protection coating systems for wind turbine blades. Renew. Energy 2023, 218, 119328. [Google Scholar] [CrossRef]
- Tempelis, A.; Jespersen, K.; Dyer, K.; Clack, A.; Mishnaevsky, L. How leading edge roughness influences rain erosion of wind turbine blades? Wear 2024, 552–553, 205446. [Google Scholar] [CrossRef]
- Caboni, M.; Slot, H.; Bergman, G.; Wouters, D.; Van der Mijle Meijer, H. Evaluation of wind turbine blades’ rain-induced leading edge erosion using rainfall measurements at offshore, coastal and onshore locations in the Netherlands. J. Phys. Conf. Ser. 2024, 2767, 062003. [Google Scholar] [CrossRef]
- Bech, J.; Jensen-Johansen, N.; Madsen, M.; Hannesdottir, A.; Hasager, C. Experimental Study on the Effect of Drop Size in Rain Erosion Test and on Lifetime Prediction of Wind Turbine Blades. Renew. Energy 2022, 197, 776–789. [Google Scholar] [CrossRef]
- Dorleans, V.; Delille, R.; Notta-Cuvier, D.; Lauro, F.; Michau, E. Time-temperature superposition in viscoelasticity and viscoplasticity for thermoplastics. Polym. Test. 2021, 101, 107287. [Google Scholar] [CrossRef]
- Ljubic, D.; Stamenovic, M.; Smithson, C.; Nujkic, M.; Medo, B.; Putic, S. Time-temperature superposition principle—Application of WLF equation in polymer analysis and composites. Zast. Mater. 2014, 55, 395–400. [Google Scholar] [CrossRef]
- Ouachan, I. Characterisation and Understanding of Viscoelastic Leading Edge Protection Solutions Used on Offshore Wind Turbines. Ph.D. Thesis, University of Bristol, Bristol, UK, 2022. [Google Scholar]
- Schober, P.; Schwarte, L. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Ansari, Q.; Sanchez, F.; Domenech-Ballester, L.; Young, T. Evaluation of Offshore Wind Turbine Leading-Edge Protection Coating Failure Mode under Rain Erosion. Procedia Struct. Integr. 2024, 52, 122–132. [Google Scholar] [CrossRef]
- Katsivalis, I.; Chanteli, A.; Finnegan, W.; Young, T. Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applications. Wind. Energy 2022, 25, 1758–1774. [Google Scholar] [CrossRef]
- Miller, J.; Erickson, M. On Dummy Variable Regression Analysis. Sociol. Methods Res. 1974, 2, 409–430. [Google Scholar] [CrossRef]
Precipitation Variable | LEP Conditions Experienced in RETs According to DNV-RP-0573 | LEP Conditions Experienced In Situ |
---|---|---|
1 | The accelerated test (ALT) and highly accelerated test (HALT) use two distinct rotational speeds, 1200 rpm and 800 rpm, respectively, to drive two different droplet impact frequencies using constant single droplet size. | A broad range of intermittent droplet frequencies defined by the tip speed of the turbine. |
2 | A single droplet impact frequency is maintained consistently throughout the test duration. | Sequenced periods throughout the year of low-intensity events, followed by high-intensity events and vice versa. |
3 | Maintains a constant rain field with no interruptions. | Recovery periods throughout the year characterised by significant intervals of no rainfall. |
4 | A nominal droplet size of 2 mm is required, though in practice in R&D A/S rigs, the actual droplet size typically ranges between 2.3 and 2.5 mm. | A range of droplet sizes from 0.5 (below 0.5 mm expected not to impact) to 6 mm. |
Experimental Procedure | Temperature (°C) | Amplitude (µm) | Frequency (Hz) |
---|---|---|---|
Oscillation strain sweep | 20 | 0.1–10,000 | 1 |
Oscillation frequency sweep/time–temperature superposition (TTS) | −50 to 50 (at 10 °C intervals) | 20 | 0.1–10 (per frequency sweep) |
Oscillation fatigue test | 20 | 20–500 | 1–200 |
Test | Needle Size (G) | Rotational Velocity (rpm) | Flow Rate (L/h) | Inspection Period (mins) | LEP A | LEP B | ||
---|---|---|---|---|---|---|---|---|
Droplet Size (mm) | Droplet Impact Frequency (#/m2s) | Droplet Size (mm) | Droplet Impact Frequency (#/m2s) | |||||
T1 | 27 | 950 | 65 | 60 | 2.46 | 45,176 | 2.23 | 41,941 |
T2 | 22 | 1100 | 95 | 0 | 2.94 | 44,152 | 3.00 | 41,493 |
T3 | 27 | 1000 | 55 | 20 | 2.52 | 37,356 | 2.49 | 38,762 |
T4 | 22 | 1050 | 90 | 60 | 3.01 | 37,140 | 2.97 | 38,700 |
T5 | 22 | 900 | 95 | 0 | 2.94 | 36,125 | 3.00 | 33,949 |
T6 | 27 | 1200 | 35 | 20 | 2.55 | 27,505 | 2.55 | 27,505 |
Criteria | Elastic | Brittle |
---|---|---|
Number of damage sites | Few | Many |
Relation of damage to the linear velocity | Minimal dependency (i.e., does not necessarily initiate at high-speed end of sample) | Highly dependent (i.e., initiates at high-speed end and propagates along the sample) |
Relation to other damage | Damage is localised with no/ minimal damage between local sites | Continuous damage along sample |
Damage progression rate | Slow | Fast |
Damage form | Smooth edges | Sharp edges |
Test | Motivation | Description | Test Conditions [RPM:Flow Rate (L/h):Droplet Size (mm)] |
---|---|---|---|
T1 | Standard DNV-RP-0171 test (control) | Standard test with G27 needles and 1 h inspection period | 1000:55:2.37 |
T2 | Sequencing of high- and low-cycle fatigue loading as occurs in situ | Low-cycle fatigue–high-cycle fatigue–repeat | 1000:45:2.53/1000:65:2.38 |
T3 | High-cycle fatigue–low-cycle fatigue–repeat | 1000:45:2.53/1000:65:2.38 | |
T4 | Low-cycle fatigue–rest period–high-cycle fatigue–repeat | 1000:45:2.53/1000:65:2.38 | |
T5 | Exploration of the potential droplet size combination effect (uses T1) | Test with G32 needles | 1000:30:2.05 |
T6 | Test with G22 needles | 1000:60:2.95 | |
T7 | Examination of the influence of the inspection period (uses T1) | No inspection period (test ran on automated mode) | 1000:55:2.37 |
T8 | At least 24 h inspection period | 1000:55:2.37 |
LEP A | LEP B | |||
---|---|---|---|---|
% Difference from Incubation to Breakthrough | CoV | % Difference from Incubation to Breakthrough | CoV | |
T2: Low-cycle—High-cycle | 700 | 33.1 | 444 | 22.7 |
T3: High-cycle—Low-cycle | 367 | 24.8 | 445 | 24.0 |
T4: Low-cycle—Rest—High-cycle | 533 | 9.1 | 562 | 18.8 |
LEP A | LEP B | |||
---|---|---|---|---|
% Difference from Incubation to Breakthrough | CoV | % Difference from Incubation to Breakthrough | CoV | |
T7: Automated Inspection | 300 | 88.6 | 172 | 22.0 |
T1: Standard Inspection (1 h) | 875 | 55.0 | 506 | 69.6 |
T8: Long Inspection (at least 24 h) | 1080 | 48.0 | 1100 | 37.2 |
LEP A | LEP B | |||
---|---|---|---|---|
% Difference from Incubation to Breakthrough | CoV | % Difference from Incubation to Breakthrough | CoV | |
T6: G22, 2.95 mm | 1200 | 27.8 | 614 | 33.6 |
T1: G27, 2.37 mm | 875 | 55.0 | 506 | 69.6 |
T5: G32, 2.05 mm | 870 | 28.3 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinsley, P.; Porteous, S.; Jones, S.; Subramanian, P.; Campo, O.; Dyer, K. Limitations of Standard Rain Erosion Tests for Wind Turbine Leading Edge Protection Evaluation. Wind 2025, 5, 3. https://doi.org/10.3390/wind5010003
Kinsley P, Porteous S, Jones S, Subramanian P, Campo O, Dyer K. Limitations of Standard Rain Erosion Tests for Wind Turbine Leading Edge Protection Evaluation. Wind. 2025; 5(1):3. https://doi.org/10.3390/wind5010003
Chicago/Turabian StyleKinsley, Peter, Sam Porteous, Stephen Jones, Priyan Subramanian, Olga Campo, and Kirsten Dyer. 2025. "Limitations of Standard Rain Erosion Tests for Wind Turbine Leading Edge Protection Evaluation" Wind 5, no. 1: 3. https://doi.org/10.3390/wind5010003
APA StyleKinsley, P., Porteous, S., Jones, S., Subramanian, P., Campo, O., & Dyer, K. (2025). Limitations of Standard Rain Erosion Tests for Wind Turbine Leading Edge Protection Evaluation. Wind, 5(1), 3. https://doi.org/10.3390/wind5010003