Exploring the Potential of Methanotrophs for Plant Growth Promotion in Rice Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methanotrophs Used and Genome Analysis for the Detection of Plant Growth Promotion Genes/Pathways
2.2. Pot Experiments Using Methanotrophs as Bioinoculants
2.2.1. Trial with Pure Cultures of Type I and Type II Methanotrophs
2.2.2. Trial with Mixed Cultures
3. Results and Discussion
3.1. Confirmation of Nitrogen Fixation Potential in Methanotrophs
3.2. Effect of Methanotrophic Bioinoculant on Rice Plant Growth
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiau, Y.-J.; Cai, Y.; Jia, Z.; Chen, C.-L.; Chiu, C.-Y. Phylogenetically distinct methanotrophs modulate methane oxidation in rice paddies across Taiwan. Soil Biol. Biochem. 2018, 124, 59–69. [Google Scholar] [CrossRef]
- Sofi, P.; Wani, S. Prospects of nitrogen fixation in rice. Asian J. Plant Sci. 2007, 6, 203–213. [Google Scholar] [CrossRef]
- Nan, Q.; Wang, C.; Wang, H.; Yi, Q.; Wu, W. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field. Sci. Total Environ. 2020, 746, 141351. [Google Scholar] [CrossRef] [PubMed]
- Conrad, R. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 2009, 1, 285–292. [Google Scholar] [CrossRef]
- Conrad, R. Microbial Ecology of Methanogens and Methanotrophs. Adv. Agron. 2007, 96, 1–63. [Google Scholar]
- Hanson, R.S.; Hanson, T.E. Methanotrophic bacteria. Microbiol. Rev. 1996, 60, 439–471. [Google Scholar] [CrossRef]
- Dedysh, S.N.; Knief, C. Diversity and phylogeny of described aerobic methanotrophs. In Methane Biocatalysis: Paving the Way to Sustainability; Kalyuzhnaya, M.G., Xing, X.-H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 17–42. [Google Scholar]
- Bowman, J. The Methanotrophs—The Families Methylococcaceae and Methylocystaceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2006; pp. 266–289. [Google Scholar]
- Auman, A.J.; Speake, C.C.; Lidstrom, M.E. nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl. Environ. Microbiol. 2001, 67, 4009–4016. [Google Scholar] [CrossRef]
- Heylen, K.; De Vos, P.; Vekeman, B. Draft Genome Sequences of Eight Obligate Methane Oxidizers Occupying Distinct Niches Based on Their Nitrogen Metabolism. Genome Announc. 2016, 4, 1110–1128. [Google Scholar] [CrossRef]
- Pandit, P.S.; Hoppert, M.; Rahalkar, M.C. Description of ‘Candidatus Methylocucumis oryzae’, a novel Type I methanotroph with large cells and pale pink colour, isolated from an Indian rice field. Antonie Van Leeuwenhoek 2018, 111, 2473–2484. [Google Scholar] [CrossRef]
- Khatri, K.; Mohite, J.A.; Pandit, P.S.; Bahulikar, R.; Rahalkar, M.C. Description of ‘Ca. Methylobacter oryzae’ KRF1, a novel species from the environmentally important Methylobacter clade 2. Antonie Van Leeuwenhoek 2020, 113, 729–735. [Google Scholar] [CrossRef]
- Rahalkar, M.C.; Khatri, K.; Pandit, P.S.; Dhakephalkar, P.K. A putative novel Methylobacter member (KRF1) from the globally important Methylobacter clade 2: Cultivation and salient draft genome features. Antonie Van Leeuwenhoek 2019, 112, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Rahalkar, M.C.; Khatri, K.; Mohite, J.; Pandit, P.S.; Bahulikar, R.A. A novel Type I methanotroph Methylolobus aquaticus gen. nov. sp. nov. isolated from a tropical wetland. Antonie Van Leeuwenhoek 2020, 113, 959–971. [Google Scholar] [CrossRef] [PubMed]
- Khatri, K.; Mohite, J.; Pandit, P.; Bahulikar, R.A.; Rahalkar, M.C. Isolation, Description and Genome Analysis of a Putative Novel Methylobacter Species (‘Ca. Methylobacter coli’) Isolated from the Faeces of a Blackbuck (Indian Antelope). Microbiol. Res. 2021, 12, 513–523. [Google Scholar] [CrossRef]
- Khalifa, A.; Lee, C.G.; Ogiso, T.; Ueno, C.; Dianou, D.; Demachi, T.; Katayama, A.; Asakawa, S. Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere. Int. J. Syst. Evol. Microbiol. 2015, 65, 3527–3534. [Google Scholar] [CrossRef] [PubMed]
- Sessitsch, A.; Hardoim, P.; Döring, J.; Weilharter, A.; Krause, A.; Woyke, T.; Mitter, B.; Hauberg-Lotte, L.; Friedrich, F.; Rahalkar, M.; et al. Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis. Mol. Plant-Microbe Interact. 2012, 25, 28–36. [Google Scholar] [CrossRef]
- Hill, S. Physiology of nitrogen fixation in free living heterotrophs. Biol. Nitrogen Fixat. 1992, 1992, 87–134. [Google Scholar]
- Cao, W.; Cai, Y.; Bao, Z.; Wang, S.; Yan, X.; Jia, Z. Methanotrophy Alleviates Nitrogen Constraint of Carbon Turnover by Rice Root-Associated Microbiomes. Front. Microbiol. 2022, 13, 885087. [Google Scholar] [CrossRef]
- Pandit, P.; Rahalkar, M.C. Renaming of ‘Candidatus Methylocucumis oryzae’ as Methylocucumis oryzae gen. nov., sp. nov., a novel Type I methanotroph isolated from India. Antonie Van Leeuwenhoek 2018, 112, 955–959. [Google Scholar] [CrossRef]
- Rahalkar, M.C.; Pandit, P.S.; Dhakephalkar, P.K.; Pore, S.; Arora, P.; Kapse, N. Genome characteristics of a novel Type I methanotroph ‘Sn10-6’ isolated from a flooded Indian rice field. Microb. Ecol. 2016, 71, 519–523. [Google Scholar] [CrossRef]
- Rahalkar, M.C.; Pandit, P.S. Genome-based insights into a putative novel Methylomonas species (strain Kb3), isolated from an Indian rice field. Gene Rep. 2018, 13, 9–13. [Google Scholar] [CrossRef]
- Pandit, P.S.; Ranade, D.R.; Dhakephalkar, P.K.; Rahalkar, M.C. A pmoA-based study reveals dominance of yet uncultured Type I methanotrophs in rhizospheres of an organically fertilized rice field in India. 3 Biotech 2016, 6, 135. [Google Scholar] [CrossRef] [PubMed]
- Pandit, P.S.; Rahalkar, M.C.; Dhakephalkar, P.K.; Ranade, D.R.; Pore, S.; Arora, P.; Kapse, N. Deciphering community structure of methanotrophs dwelling in rice rhizospheres of an Indian rice field using cultivation and cultivation-independent approaches. Microb. Ecol. 2016, 71, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Rahalkar, M.C.; Khatri, K.; Pandit, P.; Bahulikar, R.A.; Mohite, J.A. Cultivation of Important Methanotrophs From Indian Rice Fields. Front. Microbiol. 2021, 12, 669244. [Google Scholar] [CrossRef]
- Zani, S.; Mellon, M.T.; Collier, J.L.; Zehr, J.P. Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl. Environ. Microbiol. 2000, 66, 3119–3124. [Google Scholar] [CrossRef]
- Whittenbury, R.; Phillips, K.C.; Wilkinson, J.F. Enrichment, isolation and some properties of methane utilising bacteria. J. Gen. Microbiol. 1970, 61, 205–218. [Google Scholar] [CrossRef]
- Granada, C.E.; Passaglia, L.M.; De Souza, E.M.; Sperotto, R.A. Is Phosphate Solubilization the Forgotten Child of Plant Growth-Promoting Rhizobacteria? Front. Microbiol. 2018, 9, 2054. [Google Scholar] [CrossRef] [PubMed]
- Oteino, N.; Lally, R.D.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K.J.; Dowling, D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015, 6, 745. [Google Scholar] [CrossRef]
- Saharan, B.; Nehra, V. Plant growth promoting rhizobacteria: A critical review. Life Sci. Med. Res. 2011, 21, 30. [Google Scholar]
- Wu, L.; Ma, K.; Lu, Y. Rice roots select for type I methanotrophs in rice field soil. Syst. Appl. Microbiol. 2009, 32, 421–428. [Google Scholar] [CrossRef]
- Ikeda, S.; Sasaki, K.; Okubo, T.; Yamashita, A.; Terasawa, K.; Bao, Z.; Liu, D.; Watanabe, T.; Murase, J.; Asakawa, S.; et al. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ. 2014, 29, 50–59. [Google Scholar] [CrossRef]
- Frindte, K.; Maarastawi, S.A.; Lipski, A.; Hamacher, J.; Knief, C. Characterization of the first rice paddy cluster I isolate, Methyloterricola oryzae gen. nov., sp. nov. and amended description of Methylomagnum ishizawai. Int. J. Syst. Evol. Microbiol. 2017, 67, 4507–4514. [Google Scholar] [CrossRef] [PubMed]
- Lad, P.P.; Gangurde, R.T.; Jadhav, P.J.; Gavade, S.L.; Pachpor, N.A. A Comparative Study of Physico-Chemical and Cooking Qualities of Rice. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1560–1570. [Google Scholar] [CrossRef]
- Bahulikar, R.A.; Chaluvadi, S.R.; Torres-Jerez, I.; Mosali, J.; Bennetzen, J.L.; Udvardi, M. Nitrogen Fertilization Reduces Nitrogen Fixation Activity of Diverse Diazotrophs in Switchgrass Roots. Phytobiomes J. 2021, 5, 80–87. [Google Scholar] [CrossRef]
- Gilbert, B.; Frenzel, P. Rice roots and CH4 oxidation: The activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 1998, 30, 1903–1916. [Google Scholar] [CrossRef]
- Lüke, C.; Krause, S.; Cavigiolo, S.; Greppi, D.; Lupotto, E.; Frenzel, P. Biogeography of wetland rice methanotrophs. Environ. Microbiol. 2010, 12, 862–872. [Google Scholar] [CrossRef] [PubMed]
Name of the Organism | Representative Strain | Genome NCBI Number | Identification Using pmoA Gene | Identification Using 16S rRNA Gene | ||||
---|---|---|---|---|---|---|---|---|
Strain Name | GeneBank Accession Number | Nearest Match (with Type Strain) | % Similarity | Nearest Match (with Type Strain) | % Similarity | |||
pmoA Gene | 16S rRNA Gene | |||||||
Methylocucumis oryzae | BM10 | MT366581 | MN462841 | LAJX01 * | Methylococcaceae bacterium Sn10-6 | 100 | Methylococcaceae bacterium Sn10-6 | 100 |
Ca.Methylobacter coli | BlB1 | MH424899.2 | JADMKV01 | JADMKV01 | Methylobacter marinus A45 | 97.57 | Methylobacter marinus A45 | 98.5 |
Methylocystis spp. | Sn-Cys | KT156638.1 | MZ562889.1 | JAERVJ01 | Methylocystis iwaonis SS37A-Re | 99.34 | Methylocystis iwaonis SS37A-Re | 99.93 |
Methylomonas spp. | Kb3 | KP862532 | KM995837 | PIZT01 | Methylomonas denitrificans FJG1 | 95.72 | Methylomonas denitrificans strain FJG1 | 99.13 |
Methylomonas spp. | WWC4 | MH806338.1 | MH64454.1 | JAATWI01 | Methylomonas methanica S1 | 93 | Methylomonas koyamae FwR12E-Y | 97 |
Ca. Methylobacter oryzae | KRF1 | MH806336.1 | MK511847.1 | RYFG02 | Methylobacter tundripaludum SV96 | 90 | Methylobacter tundripaludum SV96 | 98.6 |
Methylolobus aquaticus | FWC3 | MH806335.1 | MH7895511 | SEYW01 | Methylocaldum marinum S8 | 85.9 | Methylocaldum marinum S8 | 94 |
Methylosinus sporium | KRF6 | WP_216281891.1 | MZ562999.1 | JAHLJF0.1 | Methylosinus sporium NCIMB 11126 | 91 | Methylosinus sporium NCIMB 11126 | 98.43 |
Sr. No. | Strain Name | Mean Plant Height (cm) | % Increase in Plant Height Compared to Control | Flowering Stage (Day after Sowing) | Total Yield (Weight of the Grains (g)) | % Increase in Total Yield Compared to Control |
---|---|---|---|---|---|---|
1 | Ca. Methylobacter coli strain BlB1 | 88 ± 3 | 12 | 110 | 22 | 38 |
2 | Methylocucumis oryzae strain BM10 | 88 ± 3 | 12 | 97 | 21 | 31 |
3 | Methylomagnum ishizawai strain KRF4 | 91 ± 3 | 16 | 106 | 18 | 13 |
4 | Methylomonas sp. Kb3 | 87 ± 7 | 12 | 111 | 18 | 13 |
5 | Methylosinus trichosporium strain KRF10 | 85 ± 7 | 12 | 107 | 17 | 6 |
6 | Methylomonas sp. WWC4 | 85 ± 7 | 12 | 107 | 17 | 6 |
7 | Ca. Methylobacter oryzae strain KRF1 | 84 ± 3 | 8 | 111 | 17 | 6 |
8 | Methylolobus aquaticus strain FWC3 | 83 ± 7 | 8 | 111 | 16 | - |
9 | Methylosinus sporium strain KRF6 | 77 ± 4 | - | 107 | 13 | - |
10 | Methylocystis sp. Sn-Cys | 88 ± 1 | 12 | 107 | 15 | - |
11 | Control pots 2021 (mean) | 78 ± 3 | - | 113 | 16 | - |
12 | Type I Methylomonas consortia | 78 ± 2 | 13 | 114 | 23 | 35 |
13 | Type II Methylosinus-Methylocystis consortia | 75 ± 2 | 9 | 114 | 19 | 12 |
14 | Control pots 2022 (mean) | 69 ± 2 | - | 113 | 17 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohite, J.A.; Khatri, K.; Pardhi, K.; Manvi, S.S.; Jadhav, R.; Rathod, S.; Rahalkar, M.C. Exploring the Potential of Methanotrophs for Plant Growth Promotion in Rice Agriculture. Methane 2023, 2, 361-371. https://doi.org/10.3390/methane2040024
Mohite JA, Khatri K, Pardhi K, Manvi SS, Jadhav R, Rathod S, Rahalkar MC. Exploring the Potential of Methanotrophs for Plant Growth Promotion in Rice Agriculture. Methane. 2023; 2(4):361-371. https://doi.org/10.3390/methane2040024
Chicago/Turabian StyleMohite, Jyoti A., Kumal Khatri, Kajal Pardhi, Shubha S. Manvi, Rutuja Jadhav, Shilpa Rathod, and Monali C. Rahalkar. 2023. "Exploring the Potential of Methanotrophs for Plant Growth Promotion in Rice Agriculture" Methane 2, no. 4: 361-371. https://doi.org/10.3390/methane2040024
APA StyleMohite, J. A., Khatri, K., Pardhi, K., Manvi, S. S., Jadhav, R., Rathod, S., & Rahalkar, M. C. (2023). Exploring the Potential of Methanotrophs for Plant Growth Promotion in Rice Agriculture. Methane, 2(4), 361-371. https://doi.org/10.3390/methane2040024