Anaerobic Co-Digestion of Vinasse and Pentose Liquor and the Role of Micronutrients in Methane Production within Sugarcane Biorefineries
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Characterization of the Inoculum and Substrates
3.2. BMP Tests and Digestibility
3.3. Kinetics and Modeling
4. Materials and Methods
4.1. Inoculum and Substrates
4.2. BMP Tests
4.3. Physicochemical Methods
4.4. Modeling of Experimental Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lopes, M.L.; de Paulillo, S.C.L.; Godoy, A.; Cherubin, R.A.; Lorenzi, M.S.; Giometti, F.H.C.; Bernardino, C.D.; de Amorim Neto, H.B.; de Amorim, H.V. Ethanol Production in Brazil: A Bridge between Science and Industry. Braz. J. Microbiol. 2016, 47, 64–76. [Google Scholar] [CrossRef]
- Santos, F.; Eichler, P.; de Queiroz, J.H.; Gomes, F. Production of Second-Generation Ethanol from Sugarcane. In Sugarcane Biorefinery, Technology and Perspectives; Elsevier: Amsterdam, The Netherlands, 2020; pp. 195–228. [Google Scholar] [CrossRef]
- Chandel, A.K.; Albarelli, J.Q.; Santos, D.T.; Chundawat, S.P.; Puri, M.; Meireles, M.A.A. Comparative Analysis of Key Technologies for Cellulosic Ethanol Production from Brazilian Sugarcane Bagasse at a Commercial Scale. Biofuels Bioprod. Biorefining 2019, 13, 994–1014. [Google Scholar] [CrossRef]
- Santos, D.C.L.P.; Correa, C.; Alves, Y.A.; Souza, C.G.; Boloy, R.A.M. Brazil and the World Market in the Development of Technologies for the Production of Second-Generation Ethanol. Alex. Eng. J. 2023, 67, 153–170. [Google Scholar] [CrossRef]
- Grassi, M.C.B.; Pereira, G.A.G. Energy-Cane and RenovaBio: Brazilian Vectors to Boost the Development of Biofuels. Ind. Crops Prod. 2019, 129, 201–205. [Google Scholar] [CrossRef]
- Fuess, L.T.; Rodrigues, I.J.; Garcia, M.L. Fertirrigation with Sugarcane Vinasse: Foreseeing Potential Impacts on Soil and Water Resources through Vinasse Characterization. J. Environ. Sci. Health Part A 2017, 52, 1063–1072. [Google Scholar] [CrossRef]
- Carpanez, T.G.; Moreira, V.R.; Assis, I.R.; Amaral, M.C.S. Sugarcane Vinasse as Organo-Mineral Fertilizers Feedstock: Opportunities and Environmental Risks. Sci. Total Environ. 2022, 832, 154998. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.; Singh, A.; Bajar, S.; Pant, D.; Din, Z.U. Ethanol from Lignocellulosic Biomass: An in-Depth Analysis of Pre-Treatment Methods, Fermentation Approaches and Detoxification Processes. J. Environ. Chem. Eng. 2021, 9, 105798. [Google Scholar] [CrossRef]
- Nair, R.B.; Lennartsson, P.R.; Taherzadeh, M.J. Bioethanol Production From Agricultural and Municipal Wastes. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 157–190. [Google Scholar]
- Solarte-Toro, J.C.; Romero-García, J.M.; Martínez-Patiño, J.C.; Ruiz-Ramos, E.; Castro-Galiano, E.; Cardona-Alzate, C.A. Acid Pretreatment of Lignocellulosic Biomass for Energy Vectors Production: A Review Focused on Operational Conditions and Techno-Economic Assessment for Bioethanol Production. Renew. Sustain. Energy Rev. 2019, 107, 587–601. [Google Scholar] [CrossRef]
- Rabelo, S.C.; de Paiva, L.B.B.; Pin, T.C.; Pinto, L.F.R.; Tovar, L.P.; Nakasu, P.Y.S. Chemical and Energy Potential of Sugarcane. In Sugarcane Biorefinery, Technology and Perspectives; Elsevier: Amsterdam, The Netherlands, 2020; pp. 141–163. [Google Scholar] [CrossRef]
- Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies 2019, 12, 1106. [Google Scholar] [CrossRef]
- Fernando Herrera Adarme, O.; Eduardo Lobo Baêta, B.; Cardoso Torres, M.; Camilo Otalora Tapiero, F.; Vinicius Alves Gurgel, L.; de Queiroz Silva, S.; Francisco de Aquino, S. Biogas Production by Anaerobic Co-Digestion of Sugarcane Biorefinery Byproducts: Comparative Analyses of Performance and Microbial Community in Novel Single-and Two-Stage Systems. Bioresour. Technol. 2022, 354, 127185. [Google Scholar] [CrossRef] [PubMed]
- García, O.D.V.; Neto, A.M.P.; Moretto, M.R.D.; Zaiat, M.; Martins, G. Food-to-Microorganism Ratio as a Crucial Parameter to Maximize Biochemical Methane Potential from Sugarcane Vinasse. Braz. J. Chem. Eng. 2023, 40, 655–671. [Google Scholar] [CrossRef]
- Volpi, M.P.C.; Brenelli, L.B.; Mockaitis, G.; Rabelo, S.C.; Franco, T.T.; Moraes, B.S. Use of Lignocellulosic Residue from Second-Generation Ethanol Production to Enhance Methane Production Through Co-Digestion. Bioenergy Res. 2022, 15, 602–616. [Google Scholar] [CrossRef]
- Adarme, O.F.H.; Baêta, B.E.L.; Filho, J.B.G.; Gurgel, L.V.A.; de Aquino, S.F. Use of Anaerobic Co-Digestion as an Alternative to Add Value to Sugarcane Biorefinery Wastes. Bioresour. Technol. 2019, 287, 121443. [Google Scholar] [CrossRef] [PubMed]
- Wongarmat, W.; Reungsang, A.; Sittijunda, S.; Chu, C.-Y. Anaerobic Co-Digestion of Biogas Effluent and Sugarcane Filter Cake for Methane Production. Biomass Convers. Biorefin. 2022, 12, 901–912. [Google Scholar] [CrossRef]
- ABiogás. Available online: https://abiogas.org.br/ (accessed on 7 April 2023).
- Empresa de Pesquisa Energética. Available online: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/plano-decenal-de-expansao-de-energia-2032 (accessed on 7 April 2023).
- CIBiogas. Available online: https://materiais.cibiogas.org/download-panorama-do-biogas-no-brasil-2021 (accessed on 7 April 2023).
- Geo Elétrica. Available online: https://geobiogas.tech/projeto/geo-eletrica-tamboara (accessed on 7 April 2023).
- Raízen. Available online: https://www.raizen.com.br/sala-de-imprensa/raizen-inaugura-planta-de-biogas-e-consolida-portfolio-de-energias-renovaveis (accessed on 7 April 2023).
- Angelidaki, I.; Sanders, W. Assessment of the Anaerobic Biodegradability of Macropollutants. Rev. Environ. Sci. Biotechnol. 2004, 3, 117–129. [Google Scholar] [CrossRef]
- Kiani Deh Kiani, M.; Parsaee, M.; Safieddin Ardebili, S.M.; Reyes, I.P.; Fuess, L.T.; Karimi, K. Different Bioreactor Configurations for Biogas Production from Sugarcane Vinasse: A Comprehensive Review. Biomass Bioenergy 2022, 161, 106446. [Google Scholar] [CrossRef]
- Fuess, L.T.; Cruz, R.B.C.M.; Zaiat, M.; Nascimento, C.A.O. Diversifying the Portfolio of Sugarcane Biorefineries: Anaerobic Digestion as the Core Process for Enhanced Resource Recovery. Renew. Sustain. Energy Rev. 2021, 147, 111246. [Google Scholar] [CrossRef]
- Piacentini Rodriguez, R.; Manochio, C.; De, B.; Moraes, S. Energy Integration of Biogas Production in an Integrated 1G2G Sugarcane Biorefinery: Modeling and Simulation. BioEnergy Res. 2019, 12, 158–167. [Google Scholar] [CrossRef]
- Moraes, B.S.; Zaiat, M.; Bonomi, A. Anaerobic Digestion of Vinasse from Sugarcane Ethanol Production in Brazil: Challenges and Perspectives. Renew. Sustain. Energy Rev. 2015, 44, 888–903. [Google Scholar] [CrossRef]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 0471468959. [Google Scholar]
- Wang, K.; Yun, S.; Xing, T.; Li, B.; Abbas, Y.; Liu, X. Binary and Ternary Trace Elements to Enhance Anaerobic Digestion of Cattle Manure: Focusing on Kinetic Models for Biogas Production and Digestate Utilization. Bioresour. Technol. 2021, 323, 124571. [Google Scholar] [CrossRef]
- Chen, J.L.; Steele, T.W.J.; Stuckey, D.C. Stimulation and Inhibition of Anaerobic Digestion by Nickel and Cobalt: A Rapid Assessment Using the Resazurin Reduction Assay. Environ. Sci. Technol. 2016, 50, 11154–11163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lian, J.; Jiang, Z.; Guo, J.; Guo, Y.; Gou, C. A Study of the Kinetics and the Effect of Trace Elements on Mixed Anaerobic Fermentative Biogas Production by Ternary Quadratic General Rotary Unitized Design. Biotechnol. Biotechnol. Equip. 2016, 30, 90–99. [Google Scholar] [CrossRef]
- Weiland, P. Anforderungen an Pflanzen Seitens Des Biogasanlagenbetreibers, Tll-Jena, Eigenverlag, 12. Thüringer Bioenergietag 2006, 12, 26–32. [Google Scholar]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Cabirol, N.; Barragán, E.J.; Durán, A.; Noyola, A. Effect of Aluminium and Sulphate on Anaerobic Digestion of Sludge from Wastewater Enhanced Primary Treatment. Water Sci. Technol. 2003, 48, 235–240. [Google Scholar] [CrossRef]
- Leighton, I.R.; Forster, C.F. The Effect of Heavy Metal Ions on the Performance of a Two-Phase Thermophilic Anaerobic Digester. Process Saf. Environ. Prot. 1997, 75, 27–32. [Google Scholar] [CrossRef]
- Scherer, P.; Sahm, H. Influence of Sulphur-Containing Compounds on the Growth of Methanosarcina Barkeri in a Defined Medium. European Journal of Applied Microbiology and Biotechnology 1981, 12, 28–35. [Google Scholar] [CrossRef]
- Seyfried, C.F.; Bode, H.; Austermann-Haun, U.; Brunner, G.; von Hagel, G.; Kroiss, H. Anaerobe Verfahren Zur Behandlung von Industrieabwässern. Korresp. Abwasser 1990, 37, 1247–1251. [Google Scholar]
- Demirel, B.; Scherer, P. Trace Element Requirements of Agricultural Biogas Digesters during Biological Conversion of Renewable Biomass to Methane. Biomass Bioenergy 2011, 35, 992–998. [Google Scholar] [CrossRef]
- Rajagopal, R.; Massé, D.I.; Singh, G. A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Li, A. Enhanced Anaerobic Digestion of Food Waste by Trace Metal Elements Supplementation and Reduced Metals Dosage by Green Chelating Agent [S, S]-EDDS via Improving Metals Bioavailability. Water Res. 2015, 84, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Janke, L.; Weinrich, S.; Leite, A.F.; Schüch, A.; Nikolausz, M.; Nelles, M.; Stinner, W. Optimization of Semi-Continuous Anaerobic Digestion of Sugarcane Straw Co-Digested with Filter Cake: Effects of Macronutrients Supplementation on Conversion Kinetics. Bioresour. Technol. 2017, 245, 35–43. [Google Scholar] [CrossRef] [PubMed]
- López González, L.M.; Pereda Reyes, I.; Romero Romero, O. Anaerobic Co-Digestion of Sugarcane Press Mud with Vinasse on Methane Yield. Waste Manag. 2017, 68, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, A.; Rosas, L.; Ilangovan, K.; Noyola, A. Effect of Trace Metals on the Anaerobic Degradation of Volatile Fatty Acids in Molasses Stillage. Water Sci. Technol. 1995, 32, 121–129. [Google Scholar] [CrossRef]
- Zitomer, D.H.; Johnson, C.C.; Speece, R.E. Metal Stimulation and Municipal Digester Thermophilic/Mesophilic Activity. J. Environ. Eng. 2008, 134, 42–47. [Google Scholar] [CrossRef]
- De Araujo, D.M. Digestão Anaeróbia de Vinhaça Em Reatores UASB Termofílicos, Em Série, Com Adição de Fe, Ni e Co. Master’s Dissertation, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil, 2017. [Google Scholar]
- Hu, Q.; Sun, J.; Sun, D.; Tian, L.; Ji, Y.; Qiu, B. Simultaneous Cr(VI) Bio-Reduction and Methane Production by Anaerobic Granular Sludge. Bioresour. Technol. 2018, 262, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.B.; Bonan, C.I.D.G.; Biazi, L.E.; Dionísio, S.R.; Bonatelli, M.L.; Andrade, A.L.D.; Renzano, E.C.; Costa, A.C.; Ienczak, J.L. Investigation of Hemicellulosic Hydrolysate Inhibitor Resistance and Fermentation Strategies to Overcome Inhibition in Non-Saccharomyces Species. Biomass Bioenergy 2020, 137, 105549. [Google Scholar] [CrossRef]
- Baêta, B.E.L.; Lima, D.R.S.; Adarme, O.F.H.; Gurgel, L.V.A.; de Aquino, S.F. Optimization of Sugarcane Bagasse Autohydrolysis for Methane Production from Hemicellulose Hydrolyzates in a Biorefinery Concept. Bioresour. Technol. 2016, 200, 137–146. [Google Scholar] [CrossRef]
- Fox, M.; Noike, T. Wet Oxidation Pretreatment for the Increase in Anaerobic Biodegradability of Newspaper Waste. Bioresour. Technol. 2004, 91, 273–281. [Google Scholar] [CrossRef]
- Facchin, V.; Cavinato, C.; Fatone, F.; Pavan, P.; Cecchi, F.; Bolzonella, D. Effect of Trace Element Supplementation on the Mesophilic Anaerobic Digestion of Foodwaste in Batch Trials: The Influence of Inoculum Origin. Biochem. Eng. J. 2013, 70, 71–77. [Google Scholar] [CrossRef]
- Peixoto, G.; Luis, J.; Pantoja-Filho, R.; Augusto, J.; Agnelli, B.; Barboza, M.; Zaiat, M.; Biotechnol, A.B.; Peixoto, G.; Pantoja-Filho, J.L.R.; et al. Hydrogen and Methane Production, Energy Recovery, and Organic Matter Removal from Effluents in a Two-Stage Fermentative Process. Appl. Biochem. Biotechnol. 2012, 168, 651–671. [Google Scholar] [CrossRef] [PubMed]
- Vaquerizo, F.R.; Cruz-Salomon, A.; Valdovinos, E.R.; Pola-Albores, F.; Lagunas-Rivera, S.; Meza-Gordillo, R.; Ruiz Valdiviezo, V.M.; Simuta Champo, R.; Moreira- Acosta, J. Anaerobic Treatment of Vinasse from Sugarcane Ethanol Production in Expanded Granular Sludge Bed Bioreactor. J. Chem. Eng. Process Technol. 2017, 9, 375. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Zhang, Y.; Yuan, Z.; He, M.; Liang, C.; Zhuang, X.; Xie, J. Sequential Bioethanol and Biogas Production from Sugarcane Bagasse Based on High Solids Fed-Batch SSF. Energy 2015, 90, 1199–1205. [Google Scholar] [CrossRef]
- Deutscher, V. Fermentation of Organic Materials Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; VDI: Alexisbad, Germany, 2006. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; ISBN 978-0-87553-013-0. [Google Scholar]
1G Vinasse | 2G Vinasse | Pentose Liquor | |
---|---|---|---|
pH | 5.5 | 5.0 | 2.0 |
Total solids (TS) (g L−1) | 26.0 | 33.2 | 28.3 |
Total fixed solids (FS) (g L−1) | 7.7 | 6.9 | 2.5 |
Total volatile solids (TVS) (g L−1) | 18.4 | 26.3 | 25.8 |
Total suspended solids (TSS) (g L−1) | 0.4 | 4.2 | 0.4 |
Fixed suspended solids (FSS) (g L−1) | 0 | 0.5 | 0.1 |
Volatile suspended solids (VSS) (g L−1) | 0.4 | 3.7 | 0.3 |
COD (g L−1) | 28.3 | 48.7 | 41.5 |
Glucose (g L−1) | 1.56 | 2.91 | 2.59 |
Malic acid (g L−1) | 6.76 | 0.15 | 0.21 |
Acetic acid (g L−1) | 1.39 | 1.59 | 3.68 |
Lactic acid (g L−1) | 2.10 | 2.26 | 0.00 |
Formic acid (g L−1) | 0.00 | 0.00 | 0.41 |
Propionic acid (g L−1) | 1.74 | 2.85 | 1.00 |
Iso-butyric acid (g L−1) | 0.00 | 0.80 | 0.00 |
Butyric acid (g L−1) | 5.00 | 0.00 | 0.00 |
Succinic acid (g L−1) | 1.99 | 0.60 | 0.52 |
Ethanol (g L−1) | 3.88 | 10.69 | 3.48 |
HMF (g L−1) | 0.03 | 0.18 | 0.02 |
Furfural (g L−1) | 0.00 | 0.00 | 0.33 |
Micronutrient | 1G Vinasse | 2G Vinasse | Pentose Liquor |
---|---|---|---|
Al (mg L−1) | 89.7 | 3.5 | 917.2 |
Br (mg L−1) | 4.6 | 4.1 | N/D |
Ca (mg L−1) | 1711.4 | 82.2 | 575.5 |
Cl (mg L−1) | 2361.6 | N/D | 7.1 |
Co (mg L−1) | N/D | N/D | 7.2 |
Cr (mg L−1) | N/D | N/D | 33.9 |
Cu (mg L−1) | 4.2 | N/D | 1.9 |
Fe (mg L−1) | 313.2 | 8.6 | 1553.7 |
K (mg L−1) | 5868.8 | 3028 | 1114.4 |
Mg (mg L−1) | 500.7 | 40.2 | 275.9 |
Mn (mg L−1) | 29.9 | 1.1 | 76 |
Mo (mg L−1) | 0.9 | 2.7 | N/D |
Na (mg L−1) | 228.2 | 5537.5 | 82.6 |
Ni (mg L−1) | 2.3 | 1.6 | 161.3 |
P (mg L−1) | 512.2 | 2705.3 | 138.3 |
Rb (mg L−1) | 9.7 | 0.7 | 2.7 |
S (mg L−1) | N/D | 848.7 | 2237.1 |
Si (mg L−1) | N/D | 245.3 | 572.7 |
W (mg L−1) | N/D | 5.7 | N/D |
Zn (mg L−1) | 33.1 | 10.5 | 6.8 |
Assay | Cumulative Biogas Production (mL) * | CH4 Concentration (%) * | TBMP (NmL CH4 gTVS−1) | BMP (NmL CH4 gTVS−1) * | Digestibility * |
---|---|---|---|---|---|
Cellulose | 959 ± 56 | 53 ± 3 | 415 | 395 ± 53 | 95 ± 13% |
1G vinasse | 1000 ± 12 a | 51 ± 8 a | 538 | 494 ± 11 a | 92 ± 2% a |
2G vinasse | 1160 ± 6 a,b | 55 ± 5 a | 647 | 631 ± 6 a | 98 ± 1% a |
Pentose liquor | 814 ± 34 a,c | 46 ± 3 a | 562 | 256 ± 26 b | 46 ± 5% b |
Co-digestion | 1020 ± 58 a,b | 58 ± 8 a | 588 | 557 ± 59 a | 95 ± 10% a |
Assay | P (NmL CH4 gTVS−1) | λ (Day) | Rm (NmL CH4 gTVS−1 Day−1) | Adj. R² | Reduced Chi2 |
---|---|---|---|---|---|
Cellulose a | 439 ± 10 | 35.8 ± 0.7 | 8.5 ± 0.3 | 0.999 | 1.273 |
1G vinasse a | 510 ± 16 | 50 ± 1 | 11.2 ± 0.6 | 0.998 | 3.020 |
2G vinasse a | 624 ± 10 | 25 ± 1 | 12 ± 1 | 0.998 | 2.506 |
Co-digestion a | 562 ± 12 | 40.4 ± 0.4 | 20 ± 1 | 0.999 | 0.302 |
Assay | Assay | Inoculum | Substrate |
---|---|---|---|
Negative control | Inoculum | 150.00 mL | - |
Positive control | Cellulose | 148.00 mL | 0.49 g |
Mono-digestion | 1G vinasse | 124.30 mL | 25.70 mL |
Mono-digestion | 2G vinasse | 131.10 mL | 18.90 mL |
Mono-digestion | Pentose liquor | 130.75 mL | 19.25 mL |
Co-digestion | 1G vinasse | 130.00 mL | 8.20 mL |
2G vinasse | 5.80 mL | ||
Pentose liquor | 6.00 mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, G.P.; Lima, B.V.M.; Volpi, M.P.C.; Rodriguez, R.P.; Moraes, B.S. Anaerobic Co-Digestion of Vinasse and Pentose Liquor and the Role of Micronutrients in Methane Production within Sugarcane Biorefineries. Methane 2023, 2, 426-439. https://doi.org/10.3390/methane2040029
Freitas GP, Lima BVM, Volpi MPC, Rodriguez RP, Moraes BS. Anaerobic Co-Digestion of Vinasse and Pentose Liquor and the Role of Micronutrients in Methane Production within Sugarcane Biorefineries. Methane. 2023; 2(4):426-439. https://doi.org/10.3390/methane2040029
Chicago/Turabian StyleFreitas, Gabriela P., Brenno Vinicius M. Lima, Maria Paula C. Volpi, Renata P. Rodriguez, and Bruna S. Moraes. 2023. "Anaerobic Co-Digestion of Vinasse and Pentose Liquor and the Role of Micronutrients in Methane Production within Sugarcane Biorefineries" Methane 2, no. 4: 426-439. https://doi.org/10.3390/methane2040029
APA StyleFreitas, G. P., Lima, B. V. M., Volpi, M. P. C., Rodriguez, R. P., & Moraes, B. S. (2023). Anaerobic Co-Digestion of Vinasse and Pentose Liquor and the Role of Micronutrients in Methane Production within Sugarcane Biorefineries. Methane, 2(4), 426-439. https://doi.org/10.3390/methane2040029