Dry Reforming of CH4 Using a Microreactor
Abstract
:1. Introduction
2. Results and Discussions
2.1. Equilibrium Calculations
2.2. Effect of the Feed Flowrate
2.3. Effect of the Feed Composition
2.4. Product Distribution
3. Materials and Methods
3.1. Catalyst Description
3.2. Experimental Set-Up
- The reactor temperature, which varied in the range 20–800 °C,
- The total inlet volumetric flowrate, which varied in the range 20–120 mL.min−1,
- The composition of the feed, characterized by the CH4:CO2 ratio, which varied in the range 0.75–1.7.
3.3. Equilibrium Consideration
3.4. Assessment of Diffusional Limitation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.B.; Wu, J.; Poncin, S.; Hamelin, M.; Li, H.Z. Microscale study of anaerobic biogas production under various hydrodynamic conditions. Environ. Sci. Technol. 2012, 46, 8698–8704. [Google Scholar] [CrossRef] [PubMed]
- Wedraogo, T.N.; Poncin, S.; Wu, J.; Li, H.Z. Intensified biogas purification in a stirred tank. Chem. Eng. Process. 2014, 86, 1–8. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Wu, J.; Poncin, S.; Cao, Z.P.; Li, Z.H.; Li, H.Z. Flow field investigation of high solid anaerobic digestion by Particle Image Velocimetry (PIV). Sci. Total Environ. 2018, 626, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Y.; Zhang, S.; Wang, X.; Peng, X.; Hu, F.; Dai, H.; Wu, J.; Poncin, S.; Li, H.Z. Visualization of mass transfer in mixing processes of high solid anaerobic digestion using Laser Induced Fluorescence (LIF) technique. Waste Manag. 2021, 127, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Y.; Zheng, X.; Zhang, S.; Ye, W.; Wu, J.; Poncin, S.; Li, H.Z. Investigation of hydrodynamics in high solid anaerobic digestion by particle image velocimetry and computational fluid dynamics: Role of mixing on flow field and dead zone reduction. Bioresour. Technol. 2021, 319, 124130. [Google Scholar] [CrossRef]
- Zhao, X.; Joseph, B.; Kuhn, J.; Ozcan, S. Biogas reforming to syngas: A review. iScience 2020, 23, 101082. [Google Scholar] [CrossRef]
- Le Saché, E.; Moreno, A.A.; Reina, T.R. Biogas conversion to syngas using advanced Ni-promoted pyrochlore catalysts: Effect of the CH4/CO2 ratio. Front. Chem. 2021, 9, 672419. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Lee, J.; Moon, D.Y.; Kim, K.Y.; Kwon, E.E. Upgrading biogas into syngas through dry reforming. Renew. Sustain. Energy Rev. 2021, 143, 110949. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Pal, A. Simulation modelling of hydrogen production from steam reforming of methane and biogas. Fuel 2024, 362, 130742. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.R.; Hansen, J.H.B. CO2-Reforming of methane over transition metals. J. Catal. 1993, 144, 38–49. [Google Scholar] [CrossRef]
- Charisiou, D.; Siakavelas, G.; Papageridis, K.N.; Baklavaridis, A.; Tzounis, L.; Avraam, D.G.; Goula, M.A. Syngas production via the biogas dry reforming reaction over nickel supported on modified with CeO2 and/or La2O3 alumina catalysts. J. Nat. Gas Sci. Eng. 2016, 31, 164–183. [Google Scholar] [CrossRef]
- Chava, R.; Seriyala, K.A.; Varma, D.B.A.; Eluvu, K.; Roy, B.; Appari, S. Investigation of Ba doping in A-site deficient perovskite Ni-exsolved catalysts for biogas dry reforming. Int. J. Hydrogen Energy 2023, 48, 27652–27670. [Google Scholar] [CrossRef]
- Latsiou, A.I.; Bereketidou, O.A.; Charisiou, N.D.; Georgiadis, A.G.; Avraam, D.G.; Goula, M.A. Synthesis and Mathematical Modelling of the Preparation Process of Nickel-Alumina Catalysts with Egg-Shell Structures for Syngas Production via Reforming of Clean Model Biogas. Catalysts 2022, 12, 274. [Google Scholar] [CrossRef]
- Chaghouri, M.; Hany, S.; Cazier, F.; Tidahy, H.L.; Gennequin, C.; Abi-Aad, E. Impact of impurities on biogas valorization through dry reforming of methane reaction. Int. J. Hydrogen Energy 2022, 47, 40415–40429. [Google Scholar] [CrossRef]
- Moogi, S.; Ko, C.H.; Rhee, G.H.; Jeon, B.H.; Khan, M.A.; Park, Y.K. Influence of catalyst synthesis methods on anti-coking strength of perovskites derived catalysts in biogas dry reforming for syngas production. Chem. Eng. J. 2022, 437, 135348. [Google Scholar] [CrossRef]
- Strniša, F.; Sagar, V.T.; Djinović, P.; Pintar, A.; Plazl, I. Ni-containing CeO2 rods for dry reforming of methane: Activity tests and a multiscale lattice Boltzmann model analysis in two model geometries. Chem. Eng. J. 2021, 413, 127498. [Google Scholar] [CrossRef]
- Kroll, V.C.H.; Swaan, H.M.; Mirodatos, C. Methane reforming reaction with carbon dioxide over Ni/SiO2 catalyst: I. Deactivation Studies. J. Catal. 1996, 161, 409–422. [Google Scholar] [CrossRef]
- Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Shahul Hamid, M.Y. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175–193. [Google Scholar] [CrossRef]
- Al-Otaibi, F.N.; Berrouk, A.S.; Xiao, X. Analysis of dry reforming of methane under different fluidization regimes using a multiphase particle-in-cell approach. Phys Fluids. 2023, 35, 033327. [Google Scholar] [CrossRef]
- Simsek, E.; Avci, A.K.; Önsan, Z.I. Investigation of catalyst performance and microstructured reactor configuration for syngas production by methane steam reforming. Catal. Today 2011, 178, 157–163. [Google Scholar] [CrossRef]
- Mbodji, M.; Commenge, J.M.; Falk, L.; Di Marco, D.; Rossignol, F.; Prost, L.; Valentin, S.; Joly, R.; Del-Gallo, P. Steam methane reforming reaction process intensification by using a millistructured reactor: Experimental setup and model validation for global kinetic reaction rate estimation. Chem. Eng. J. 2012, 207, 871–884. [Google Scholar] [CrossRef]
- Karakaya, M.; Keskin, S.; Avci, A.K. Parametric study of methane steam reforming to syngas in a catalytic microchannel reactor. Appl. Catal. Gen. 2012, 411, 114–122. [Google Scholar] [CrossRef]
- Chen, J.; Song, W.; Xu, D. Compact steam-methane reforming for the production of hydrogen in continuous flow microreactor systems. ACS Omega 2019, 4, 15600–15614. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, U.; Barrio, V.L.; Lago, N.; Requies, J.; Cambra, J.F.; Güemez, M.B.; Arias, P.L. Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and microreactor reaction systems. Int. J. Hydrogen Energy 2012, 37, 13829–13842. [Google Scholar] [CrossRef]
- Pinilla, J.L.; de Llobet, S.; Suelves, I.; Utrilla, R.; Lázaro, M.J.; Moliner, R. Catalytic decomposition of methane and methane/CO2 mixtures to produce synthesis gas and nanostructured carbonaceous material. Fuel 2011, 90, 2245–2253. [Google Scholar] [CrossRef]
- Muradov, N.; Smith, F.; T-Raissi, A. Hydrogen production by catalytic processing of renewable methane-rich gases. Int. J. Hydrogen Energy 2008, 33, 2023–2035. [Google Scholar] [CrossRef]
- Nikoo, M.K.; Amin, N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process. Technol. 2011, 92, 678–691. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef]
- Serrano-Lotina, A.; Daza, L. Influence of the operating parameters over dry reforming of methane to syngas. Int. J. Hydrogen Energy 2014, 39, 4089–4094. [Google Scholar] [CrossRef]
- Daza, C.E.; Kiennemann, A.; Moreno, S.; Molina, R. Dry reforming of methane using Ni–Ce catalysts supported on a modified mineral clay. Appl. Catal. Gen. 2009, 364, 65–74. [Google Scholar] [CrossRef]
- Davis, B.H. Fischer-Tropsch synthesis: Relationship between iron catalyst composition and process variables. Catal. Today 2003, 84, 83–98. [Google Scholar] [CrossRef]
- Gupta, M.; Smith, M.L.; Spivey, J.J. Heterogeneous Catalytic Conversion of Dry Syngas to Ethanol and Higher Alcohols on Cu-Based Catalysts. ACS Catal. 2011, 1, 641–656. [Google Scholar] [CrossRef]
- García-Diéguez, M.; Pieta, I.S.; Herrera, M.C.; Larrubia, M.A.; Alemany, L.J. Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane. J. Catal. 2010, 270, 136–145. [Google Scholar] [CrossRef]
- Reid, R.C.; Prausnitz, J.M.; Sherwood, T.K. The Properties of Gases and Liquids; McGraw-Hill chemical engineering series; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Kunii, D.; Levenspiel, O. Fluidization Engineering; Wiley: New York, NY, USA, 1969. [Google Scholar]
- Villermaux, J. Génie de la Réaction Chimique: Conception et Fonctionnement des Réacteurs; Tec & Doc: Pairs, France, 1993. [Google Scholar]
Species | D (m2.s−1) | Re | Sc | Sh | kD (m.s−1) | (mol.m−3) | fe |
---|---|---|---|---|---|---|---|
CH4 | 7.46 × 10−5 | 0.38 | 1 | 3.1 | 14 | 3.9 | 2.10 × 10−5 |
CO2 | 1.07 × 10−5 | 0.38 | 1.4 | 3.2 | 10 | 3.7 | 3.10 × 10−5 |
Species | D (m2.s−1) | (mol.m−3) | |
---|---|---|---|
CH4 | 1.11 × 10−8 | 3.9 | 0.07 |
CO2 | 6.73 × 10−9 | 3.7 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wedraogo, T.N.; Wu, J.; Li, H.Z. Dry Reforming of CH4 Using a Microreactor. Methane 2024, 3, 346-358. https://doi.org/10.3390/methane3020019
Wedraogo TN, Wu J, Li HZ. Dry Reforming of CH4 Using a Microreactor. Methane. 2024; 3(2):346-358. https://doi.org/10.3390/methane3020019
Chicago/Turabian StyleWedraogo, Tarsida N., Jing Wu, and Huai Z. Li. 2024. "Dry Reforming of CH4 Using a Microreactor" Methane 3, no. 2: 346-358. https://doi.org/10.3390/methane3020019
APA StyleWedraogo, T. N., Wu, J., & Li, H. Z. (2024). Dry Reforming of CH4 Using a Microreactor. Methane, 3(2), 346-358. https://doi.org/10.3390/methane3020019