Intensity Measurements of a Landfalling Tropical Cyclone Using Conventional Coastal Weather Radar
Abstract
:1. Introduction
2. TC Evolution over the Observation Period
2.1. TC Track in the Radar Surveillance Zone
2.2. Estimation of TC Intensity Variation Based on the Results of HLS Approximation of Radar Images of Spiral Cloud-Rain Bands
3. Estimation of the Central Pressure and Maximum Surface Wind Speed in the TC according to the Data of Two Coastal Weather Stations
3.1. Basic Relations and Estimation Algorithm
3.2. The Results of Calculating the Surface Pressure in the Center of the TC
3.3. Estimation of the Maximum Surface Wind Speed in the TC Based on the Data of Combined Meteorological and Radar Measurements
3.4. Verification the Calculated Maximum Surface Wind Speed from Measurements at a Weather Station and Best Track Data
4. Discussion
5. Summary
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Principle of HLS-Assessment of Physical Characteristics of a Tropical Cyclone
Appendix B. The Influence of Radio Refraction on Radar Probing of TCs
References
- Rappaport, E.N. Fatalities in the United States from Atlantic Tropical Cyclones: New Data and Interpretation. Bull. Am. Meteorol. Soc. 2014, 95, 341–346. [Google Scholar] [CrossRef]
- Emmanuel, K. 100 years of progress in tropical cyclone research. Meteorol. Monogr. 2018, 59, 15.1–15.68. [Google Scholar] [CrossRef]
- Cangialosi, J.P.; Blake, E.; DeMaria, M.; Penny, A.; Latto, A.; Rappaport, E.; Tallapragada, V. Recent Progress in Tropical Cyclone Intensity Forecasting at the National Hurricane Center. Weather Forecast. 2020, 35, 1913–1922. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X. Improving Hurricane Analyses and Predictions with TCI, IFEX Field Campaign Observations, and CIMSS AMVs Using the Advanced Hybrid Data Assimilation System for HWRF. Part II: Observation Impacts on the Analysis and Prediction of Patricia (2015). Mon. Weather Rev. 2020, 148, 1407–1430. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Q.; Yu, J.; Wu, D.; Yao, K. Geometric Characteristics of Tropical Cyclone Eyes before Landfall in South China based on Ground-Based Radar Observations. Adv. Atmos. Sci. 2018, 35, 592–603. [Google Scholar] [CrossRef]
- Lee, W.-C.; Jou, B.J.D.; Chang, P.-L.; Deng, S.-M. Tropical Cyclone Kinematic Structure Retrieved from Single-Doppler Radar Observations. Part I: Interpretation of Doppler Velocity Patterns and the GBVTD Technique. Mon. Weather Rev. 1999, 127, 2419–2439. [Google Scholar] [CrossRef]
- Lee, W.-C.; Bell, M.M. Rapid intensification, eyewall contraction, and breakdown of Hurricane Charley (2004) near landfall. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Stith, J.L.; Baumgardner, D.; Haggerty, J.; Hardesty, R.M.; Lee, W.-C.; Lenschow, D.; Pilewskie, P.; Smith, P.L.; Steiner, M.; Vömel, H. 100 Years of Progress in Atmospheric Observing Systems. Meteorol. Monogr. 2018, 59, 2.1–2.55. [Google Scholar] [CrossRef]
- Barnes, C.A.; Barnes, G.M. Eye and Eyewall Traits as Determined with the NOAA WP-3D Lower-Fuselage Radar. Mon. Wea. Rev. 2014, 142, 3393–3417. [Google Scholar] [CrossRef]
- Cha, T.-Y.; Bell, M.M.; Lee, W.-C.; DesRosiers, A.J. Polygonal eyewall asymmetric during the rapid intensification of hurricane Michael (2018). Geoph. Res. Let. 2020, 47, e2020GL087919. [Google Scholar] [CrossRef]
- Yurchak, B.S. Description of cloud-rain bands in a tropical cyclone by a hyperbolic-logarithmic spiral. Russ. Meteorol. Hydrol. 2007, 32, 8–18. [Google Scholar] [CrossRef]
- Yurchak, B.S. The use of a spiral band model to estimate tropical cyclone intensity. In Current Topics in Tropical Cyclone Research; IntechOpen: London, UK, 2019; pp. 1–19. Available online: https://www.intechopen.com/chapters/68590 (accessed on 14 June 2019).
- Dvorak, V.F. Tropical cyclone intensity analysis and forecasting from satellite imaginary. Mon. Wea. Rev. 1975, 103, 420–430. [Google Scholar] [CrossRef]
- Fernandez, W. Organization and motion of the spiral rainbands in hurricanes: A review. Cien. Tecn. 1982, 6, 49–98. [Google Scholar]
- Willoughby, H.E. The dynamics of the tropical cyclone core. Austr. Meteorol. Mag. 1988, 36, 183–191. [Google Scholar]
- Yurchak, B.S. An estimate of the hurricane’s intensity from radar data using hyperbolic-logarithmic approximation. Int. J. Remote Sens. 2019, 40, 9629–9964. [Google Scholar] [CrossRef]
- Yurchak, B.S. Estimating the intensity of hurricanes from historical radar data using the hyperbolic-logarithmic approximation of spiral rainbands. Adv. Environ. Eng. Res. 2020, 1, 1–13. [Google Scholar] [CrossRef]
- Holland, G.J. An analytic model of the wind and pressure profiles in Hurricanes. Mon. Wea. Rev. 1980, 106, 1212–1218. [Google Scholar] [CrossRef]
- Jorgensen, D.P. Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci. 1984, 41, 1268–1285. [Google Scholar] [CrossRef] [Green Version]
- Franklin, J.L.; Lord, S.J.; Feuer, S.F.; Marks, F.D., Jr. The kinematic structure of Hurricane Gloria (1985) determined from nested analysis of dropwindsonde and Doppler radar data. Mon. Wea. Rev. 1993, 121, 2433–2451. [Google Scholar] [CrossRef]
- Royal Observatory Hong Kong. Tropical Cyclones in 1989—Hong Kong. October 1990. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/tc1989.pdf (accessed on 10 December 2021).
- Doviak, R.; Zrnic, D.S. Doppler Radar and Weather Observations, 2nd ed.; Academic Press: San Diego, CA, USA, 1993; 562p. [Google Scholar]
- Anh, N.X.; Lutsetko, V.I.; Popov, D.O.; Chi, C.P.; Hoai, T.T. Remote sensing of atmosphere and underlying surface using radiation of global navigation satellite systems. J. Mar. Sci. Technol. 2017, 17, 1–7. Available online: http://www.vjs.ac.vn/index.php/jmst (accessed on 1 February 2022). [CrossRef]
- Venkataraman, K.S.; Srivastava, H.N.; Chawla, B.K. Radio refractive index variation associated with the passage of two tropical cyclones. Indian J. Meteorol. Geophys. 1963, 14, 331–333. [Google Scholar]
Date, 1989 Year | Dot # | Local Time | Sampled Pressure (Interpolated) at Weather Station, hPa | Distance (km) to TC Center from | Radar Measured MWR, Rm, km | Calculated Parameters | |||
---|---|---|---|---|---|---|---|---|---|
Vinh | Thanh Hoa | Vinh | Thanh Hoa | Pc, hPa | |||||
July 23 | 1 | 19:30 | 996.50 | 996.30 | 112 | 193 | 27 | No solution | |
2 | 21.20 | 996.90 | 1000.00 | 94 | 173 | 48 | 0.49 | 981.6 | |
3 | 22:15 | 997.00 | 1000.00 | 94.5 | 168.6 | 28.3 | 0.465 | 976.2 | |
4 | 23:15 | 996.75 | 1000.15 | 77.5 | 149.6 | 28.2 | 0.475 | 977.8 | |
July 24 | 5 | 0:14 | 995.75 | 999.05 | 75.4 | 137.0 | 27.2 | 0.63 | 970.8 |
6 | 1:30 | 994.50 | 997.10 | 61.7 | 114.6 | 31.3 | 0.355 | 970.8 | |
7 | 2:15 | 993.65 | 997.10 | 63.8 | 98.2 | 21.5 | 0.58 | 966.1 | |
8 | 3:45 | 993.131 | 995.90 | 74.1 | 64.8 | 27.7 | No solution | ||
9 | 4:45 | 994.30 | 994.40 | 94.5 | 34.8 | 29.8 | No solution | ||
10 | 6:15 | 995.05 | 989.60 | 108.4 | 20.5 | 24.7 | 0.24 | 977.4 | |
11 | 7:14 | 995.65 | 985.70 | 134.6 | 47.6 | 23.6 | 0.565 | 957.4 | |
12 | 8:18 | 996.30 | 984.30 | 168.8 | 78.9 | 29.1 | 0.84 | 931.2 | |
13 | 9:15 | 997.00 | 988.50 | 204.1 | 106.2 | 26 | 0.75 | 929.7 | |
14 | 9:48 | 997.10 | 991.40 | 228.5 | 127.3 | 20 | 0.6 | 936.2 |
Best Track Data (Extracted from Original) | Nearest Dot and Time Point | Interpolated Values at Time Points | |||||
---|---|---|---|---|---|---|---|
Time/Date 1989 Year | Minimum Central Pressure, hPa | Maximum Surface Wind, m s−1 | Dot # | Local Time and Date | Minimum Central Pressure, hPa | Maximum Surface Wind, m s−1 | |
UTC | Local (UTC + 7) | ||||||
1200 7/23 | 19:00 7/23 | 985 | 21 | 1 | 19:30 7/23 | 984.2 | 21.3 |
2 | 21:20 7/23 | 981.2 | 22.5 | ||||
1800 7/23 | 01:00 7/24 | 975 | 25 | 6 | 01:30 7/24 | 975.8 | 24.7 |
0000 7/24 | 07:00 7/24 | 985 | 21 | 11 | 07:14 7/24 | 985.4 | 20.6 |
0600 7/24 | 13:00 7/24 | 995 | 16 | 14 | 09:48 7/24 | 990.0 | 18.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurchak, B.S. Intensity Measurements of a Landfalling Tropical Cyclone Using Conventional Coastal Weather Radar. Meteorology 2022, 1, 113-126. https://doi.org/10.3390/meteorology1020007
Yurchak BS. Intensity Measurements of a Landfalling Tropical Cyclone Using Conventional Coastal Weather Radar. Meteorology. 2022; 1(2):113-126. https://doi.org/10.3390/meteorology1020007
Chicago/Turabian StyleYurchak, Boris S. 2022. "Intensity Measurements of a Landfalling Tropical Cyclone Using Conventional Coastal Weather Radar" Meteorology 1, no. 2: 113-126. https://doi.org/10.3390/meteorology1020007
APA StyleYurchak, B. S. (2022). Intensity Measurements of a Landfalling Tropical Cyclone Using Conventional Coastal Weather Radar. Meteorology, 1(2), 113-126. https://doi.org/10.3390/meteorology1020007