Anomaly Format of Atmospheric Governing Equations with Climate as a Reference Atmosphere
Abstract
:1. Introduction
2. Perturbation Equations under 1D, 2D, and 3D Reference Atmospheres
2.1. Atmospheric Governing Equations
2.2. One-Dimensional Static Temperature as a Reference Atmosphere
2.3. Two-Dimensional Static Temperature as a Reference Atmosphere
2.4. Three-Dimensional Static Temperature as a Reference Atmosphere
3. Four-Dimensional All-Variable Climate as a Reference Atmosphere
3.1. Climatic Equations
3.2. Anomaly Equations
3.3. Advantage and Challenge
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bolin, B. An improved barotropic model and some aspects of using the balanced equation for three-dimensional flow. Tellus 1956, 8, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Ogura, Y.; Philips, N.A. Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 1962, 19, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Phillips, N.A. Equation of motion for a shallow rotating atmosphere and the “traditional approximation”. J. Atmos. Sci. 1966, 23, 626–628. [Google Scholar] [CrossRef] [Green Version]
- Wilhemson, R.; Ogura, Y. The pressure perturbation and the numerical modeling of a cloud. J. Atmos. Sci. 1972, 29, 1295–1307. [Google Scholar] [CrossRef] [Green Version]
- Lipps, F.B.; Hemler, R.S. A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 1982, 39, 2192–2210. [Google Scholar] [CrossRef]
- Durran, D.R. Improving the anelastic approximation. J. Atmos. Sci. 1989, 46, 1453–1461. [Google Scholar] [CrossRef] [Green Version]
- Durran, D.R. A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow. J. Fluid Mech. 2008, 601, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Bannon, P.R. Potential vorticity, conservation, hydrostatic adjustment, and the anelastic approximation. J. Atmos. Sci. 1995, 52, 2302–2312. [Google Scholar] [CrossRef] [Green Version]
- Bannon, P.R. On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci. 1996, 53, 3618–3628. [Google Scholar] [CrossRef] [Green Version]
- Davies, T.; Staniforth, A.; Wood, N.; Thuburn, J. Validity of anelastic and other equation sets as inferred from normal-mode analysis. Q. J. R. Meteorol. Soc. 2003, 129, 2761–2775. [Google Scholar] [CrossRef]
- White, A.A.; Hoskins, B.J.; Roulstone, I.; Staniforth, A. Consistent approximate models of the global atmosphere: Shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Q. J. R. Meteorol. Soc. 2005, 131, 2081–2107. [Google Scholar] [CrossRef] [Green Version]
- Bannon, P.R.; Chagnon, J.M.; James, R.P. Mass conservation and the anelastic approximation. Mon. Weather Rev. 2006, 134, 2989–3005. [Google Scholar] [CrossRef]
- Durran, D.R.; Arakawa, A. Generalizing the Boussinesq Approximation to Stratified Compressible Flow. C. R. Mech. 2007, 355, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, A. and Konor. Unification of the anelastic and quasi-hydrostatic systems of equations. Mon. Weather Rev. 2009, 137, 710–716. [Google Scholar] [CrossRef] [Green Version]
- Richardson, L.F. Weather Prediction by Numerical Process; Cambridge University Press: Dover, UK, 1922; 262p, ISBN 0-521-68044-1. [Google Scholar]
- Chao, J.P. A non-linear analysis of heat convection developing within stratified atmosphere. Acta Meteorol. Sin. 1961, 31, 191–204. (In Chinese) [Google Scholar]
- Chao, J.P. On the basic problems of small-scale dynamical processes in the atmosphere. Acta Meteorol. Sin. 1962, 32, 104–118. (In Chinese) [Google Scholar]
- Chao, J.P. On the non-linear impact of stratified atmosphere and wind field on small-scale perturbation developing. Acta Meteorol. Sin. 1962, 32, 164–176. (In Chinese) [Google Scholar]
- Zeng, Q.C. Characteristic parameter and dynamical equation of atmospheric motions. Acta Meteorol. Sin. 1963, 33, 427–483. (In Chinese) [Google Scholar]
- Zeng, Q.C.; Yuan, C.G.; Zhang, X.H.; Bao, N. A test for the difference scheme of a general circulation model. Acta Meteorol. Sin. 1985, 43, 441–449. (In Chinese) [Google Scholar]
- Phillips, N.A. Principles of Large-Scale Numerical Weather Prediction. In Dynamic Meteorology; Motel, P., Ed.; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1973; pp. 1–96. [Google Scholar]
- Chen, J.B.; Simmons, A.J. Sensitivity of medium-range weather forecasts to the use of reference atmosphere. Adv. Atmos. Sci. 1989, 7, 275–293. [Google Scholar]
- Liao, D.X.; Zhu, H. A multilevel perturbation method-hydrostatic deduction and its applicability to designing the nonhydrostatic model. Chin. J. Atmos. Sci. 2012, 10, 1–9. (In Chinese) [Google Scholar]
- Smolarkiewicz, P.K.; Kühnlein, C.; Wedi, N.P. Semi-implicit integrations of perturbation equations for all-scale atmospheric dynamics. J. Comput. Phys. 2019, 376, 145–159. [Google Scholar] [CrossRef]
- Liang, X.Z. Description of a nine-level grid point atmospheric general circulation model. Adv. Atmos. Sci. 1996, 13, 269–298. [Google Scholar]
- Chen, J.B.; Shu, J.J. Application of reference atmosphere to numerical weather prediction of medium-range and climate simulation. Sci. Atmos. Sin. 1994, 18, 660–673. (In Chinese) [Google Scholar]
- Zuo, R.T.; Zhang, M.; Zhang, D.L.; Wang, A.H.; Zeng, Q.C. Designing and climatic numerical modeling of 21-level AGCM (IAP AGCM-III) Part I: Dynamical framework. Chin. J. Atmos. Sci. 2004, 28, 659–674. (In Chinese) [Google Scholar]
- Zhang, H.; Lin, Z.H.; Zeng, Q.C. The computational scheme and the test for dynamical framework of IAP AGCM-4. Chin. J. Atmos. Sci. 2009, 33, 1267–1285. (In Chinese) [Google Scholar]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; University of Cambridge Press: Cambridge, UK, 2003; p. 368. ISBN 978-0521796293. [Google Scholar]
- Chen, Z.T.; Xu, D.S.; Dai, G.F.; Zhang, Y.X.; Zhong, S.X.; Huang, Y.Y. Technical scheme and operational system of tropical high-resolution model (TRAMS-V3.0). J. Trop. Meteorol. 2020, 36, 444–454. [Google Scholar]
- Chen, D.H.; Xue, J.S.; Yang, X.S. New generation of a multi-scale NWP system (GRAPES): General scientific design. Chin. Sci. Bull. 2008, 53, 433–445. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.C. Physical and Mathematical Foundation for Weather Forecast; Science Press: Beijing, China, 1979; pp. 22–25. 543p. (In Chinese) [Google Scholar]
- Simmons, A.J.; Chen, J.B. The calculation of geopotential and the pressure gradient in the ECMWF atmospheric model: Influence on the simulation of the polar atmosphere and on temperature analysis. Q. J. R. Meteorol. Soc. 1991, 117, 29–58. [Google Scholar] [CrossRef]
- Zhang, D.M.; Sheng, H.; Ji, L.R. Development and test of hydrostatic extraction scheme in spectral model. Adv. Atmos. Sci. 1990, 7, 142–153. [Google Scholar] [CrossRef]
- Wood, N.; Staniforth, A.; White, A.; Allen, T.; Diamantakis, M.; Gross, M.; Melvin, T.; Smith, C.; Vosper, S.; Zerroukat, M.; et al. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Q. J. R. Meteorol. Soc. 2014, 140, 1505–1520. [Google Scholar] [CrossRef]
- Su, Y.; Shen, X.S.; Chen, Z.T.; Zhang, H.L. A study on the three-dimensional reference atmosphere in GRAPES_GFS: Theoretical design and ideal test. Acta Meteorol. Sin. 2018, 76, 241–254. (In Chinese) [Google Scholar]
- Su, Y.; Shen, X.S.; Zhang, H.L.; Liu, Y.Z. A study on the three-dimensional reference atmosphere in GRAPES_GFS: Constructive reference state and real forecast experiment. Acta Meteorol. Sin. 2020, 78, 962–971. (In Chinese) [Google Scholar]
- Qian, W.H.; Du, J.; Ai, Y. A review: Anomaly based versus full-field based weather analysis and forecasting. Bull. Amer. Meteor. Soc. 2021, 102, E849–E870. [Google Scholar] [CrossRef]
- Qian, W.H. Temporal Climatology and Anomalous Weather Analysis; Springer: Singapore, 2017. [Google Scholar]
- Qian, W.H.; Shan, X.L.; Liang, H.Y.; Huang, J.; Leung, C.H. A generalized beta advection model to improve unusual typhoon track prediction by decomposing total flow into climatic and anomalous flows. J. Geophys. Res. Atmos. 2014, 119, 1097–1117. [Google Scholar] [CrossRef]
- Huang, J.; Du, J.; Qian, W.H. A comparison between a Generalized Beta-Advection Model and a classical Beta-Advection Model in predicting and understanding unusual typhoon tracks in Eastern China Seas. Weather Forecast. 2015, 30, 771–792. [Google Scholar] [CrossRef]
- Robert, A.; Yee, T.L.; Ritchie, H. A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Weather Rev. 1985, 113, 388–394. [Google Scholar] [CrossRef]
- Staniforth, A.; Cote, J. Semi-Lagrangian integration schemes for atmospheric models: A review. Mon. Wea Rev. 1991, 119, 2206–2223. [Google Scholar] [CrossRef] [Green Version]
- Hortal, M. The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Q. J. R. Meteorol. Soc. 2002, 128, 1671–1687. [Google Scholar] [CrossRef]
- Juang, H.M.H. The NCEP mesoscale spectral model: A revised version of the nonhydrostatic regional spectral model. Mon. Weather Rev. 2000, 128, 2329–2362. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, W.; Du, J. Anomaly Format of Atmospheric Governing Equations with Climate as a Reference Atmosphere. Meteorology 2022, 1, 127-141. https://doi.org/10.3390/meteorology1020008
Qian W, Du J. Anomaly Format of Atmospheric Governing Equations with Climate as a Reference Atmosphere. Meteorology. 2022; 1(2):127-141. https://doi.org/10.3390/meteorology1020008
Chicago/Turabian StyleQian, Weihong, and Jun Du. 2022. "Anomaly Format of Atmospheric Governing Equations with Climate as a Reference Atmosphere" Meteorology 1, no. 2: 127-141. https://doi.org/10.3390/meteorology1020008
APA StyleQian, W., & Du, J. (2022). Anomaly Format of Atmospheric Governing Equations with Climate as a Reference Atmosphere. Meteorology, 1(2), 127-141. https://doi.org/10.3390/meteorology1020008