The Future of Climate Modelling: Weather Details, Macroweather Stochastics—Or Both?
Abstract
:1. Introduction
1.1. A Bold Vision
1.2. A Disappointing Decade
1.3. The Problem of the Details
CMIP | IPCC Expert Judgement | FEBE (Fractional Energy Balance Equation) | SCRF | ||||
---|---|---|---|---|---|---|---|
AR5 (CMIP5 MME) | AR6 (CMIP6 MME) | AR5 | AR6 | AR5 (RCP) | AR6 | AR5 (RCP) | |
Median | 3.2 | 3.7 | 3.0 | 3.3 | 2.0 | 1.8 | 2.3 |
90% Uncertainty Intervals | [1.9–4.5] | [2.0–5.5] | [1.5–4.5] | [2.5–4] | [1.6–2.4] | [1.5–2.2] | [1.8–3.7] |
Range | 2.6 | 3.5 | 3 | 1.5 | 0.8 | 0.7 | 1.9 |
2. (Re)-Uniting Richardson’s Strands
2.1. The Nonlinear Revolution: High Level Versus Low Level Laws and the Importance of the Details
2.2. The Scaling Revolution
2.2.1. Spatial Scaling Is the Primary Symmetry—Not Isotropy
2.2.2. Scaling in Time: Using Scaling to Define Different Atmospheric Regimes
3. The Fractional Energy Balance Equation (FEBE): A First Generation Macroweather, Climate Model
3.1. FEBE’s Physical Basis
3.2. Using the FEBE to Project Temperatures to 2100
3.2.1. FEBE Parameters
3.2.2. FEBE Hindprojections
3.2.3. FEBE Projections
3.3. Using Macroweather Models to Project CMIP: Model Verification and Hybrids with GCMs
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Details and Weather Scale Extremes
Appendix B. Wide Range Anisotropic Scaling: From Quasi-Geostrophy to Fractional Vorticity Equations
Appendix B.1. Scaling
Appendix B.2. Which Symmetry Is Fundamental: Isotropy or Scaling?
Appendix C. The Origin of Scaling in Fluid Turbulence
References
- Shukla, J.; Palmer, T.N.; Hagedorn, R.; Hoskins, B.; Kinter, J.; Marotzke, J.; Miller, M.; Slingo, J. Toward a new generation of world climate research and computing facilities. Bull. Am. Meteorol. Soc. 2009, 91, 1407–1412. [Google Scholar] [CrossRef]
- Slingo, J.; Bauer, P.; Bony, S.; Flato, G.; Hegerl, G.; Christensen, J.H.; Hurrell, J.; Jakob, C.; Voeikov, V.K.; Kimoto, M.; et al. Briefing 1, Next Generation Climate Models: Building Strong Foundations for Climate Action; The Royal Society: London, UK, 2021. [Google Scholar]
- Palmer, T. Climate forecasting: Build high-resolution global climate models. Nature 2014, 515, 338–339. [Google Scholar] [CrossRef] [Green Version]
- Climate Research Board. Carbon Dioxide and Climate: A Scientific Assessment; US National Academy of Science: Washington, DC, USA, 1979. [Google Scholar]
- Lovejoy, S. Weather, Macroweather and Climate: Our Random Yet Predictable Atmosphere; Oxford U. Press: Oxford, UK, 2019. [Google Scholar]
- Procyk, R.; Lovejoy, S.; Hébert, R. The Fractional Energy Balance Equation for Climate projections through 2100. Earth Syst. Dyn. 2022, 13, 81–107. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Webb, M.J.; Annan, J.D.; Armour, K.C.; Forster, P.M.; Hargreaves, J.C.; Hegerl, G.; Klein, S.A.; Marvel, K.D.; Rohling, E.J.; et al. An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of Evidence. Rev. Geophys. 2020, 58, e2019RG000678. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Senior, C.A.; Eyring, V.; Flato, G.; Lamarque, J.-F.; Stouffer, R.J.; Taylor, K.E.; Schlund, M. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 2020, 6, eaba1981. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of Higher Climate Sensitivity in CMIP6 Models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef] [Green Version]
- Hébert, R.; Lovejoy, S. Regional Climate Sensitivity and Historical Based Projections to 2100. Geophys. Res. Lett. 2018, 45, 4248–4254. [Google Scholar] [CrossRef]
- Lynch, P. The Emergence of Numerical Weather Prediction: Richardson’s Dream; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Shepherd, T.G.; Boyd, E.; Calel, R.A.; Chapman, S.C.; Dessai, S.; Dima-West, I.M.; Fowler, H.J.; James, R.; Maraun, D.; Martius, O.; et al. Storylines: An alternative approach to representing uncertainty in physical aspects of climate change. Clim. Chang. 2018, 151, 555–571. [Google Scholar] [CrossRef] [Green Version]
- Irrgang, C.; Boers, N.; Sonnewald, M.; Barnes, E.A.; Kadow, C.; Staneva, J.; Saynisch-Wagner, J. Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. Nat. Mach. Intell. 2021, 3, 667–674. [Google Scholar] [CrossRef]
- Katzav, J.; Parker, W.S. The future of climate modelling. Clim. Chang. 2015, 132, 475–487. [Google Scholar] [CrossRef]
- McIntyre, M.E. Climate Uncertainties: A Personal View. Meteorology 2022, 1, 162–170. [Google Scholar] [CrossRef]
- Budyko, M.I. The effect of solar radiation variations on the climate of the earth. Tellus 1969, 21, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Sellers, W.D. A global climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. 1969, 8, 392–400. [Google Scholar] [CrossRef]
- Del Rio Amador, L.; Lovejoy, S. Predicting the global temperature with the Stochastic Seasonal to Interannual Prediction System (StocSIPS). Clim. Dyn. 2019, 53, 4373–4411. [Google Scholar] [CrossRef]
- Del Rio Amador, L.; Lovejoy, S. Long-range Forecasting as a Past Value Problem: Untangling Correlations and Causality with scaling. Geophys. Res. Lett. 2021, 48, e2020GL092147. [Google Scholar] [CrossRef]
- Del Rio Amador, L.; Lovejoy, S. Using regional scaling for temperature forecasts with the Stochastic Seasonal to Interannual Prediction System (StocSIPS). Clim. Dyn. 2021, 57, 727–756. [Google Scholar] [CrossRef]
- Procyk, R. The Fractional Energy Balance Equation: The Unification of Externally Forced and Internal Variability. Master’s Thesis, McGill University, Montreal, QC, Canada, 2021. [Google Scholar]
- Hebert, R. A Scaling Model for the Forced Climate Variability in the Anthropocene. Master’s Thesis, McGill University, Montreal, QC, Canada, 2017. [Google Scholar]
- Hébert, R.; Lovejoy, S.; Tremblay, B. An Observation-based Scaling Model for Climate Sensitivity Estimates and Global Projections to 2100. Clim. Dyn. 2021, 56, 1105–1129. [Google Scholar] [CrossRef]
- Richardson, L.F. Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. 1926, 110, 709–737. [Google Scholar]
- Kolmogorov, A.N. Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. Proc. Acad. Sci. URSS. 1991, 30, 299–303, reprinted in Proc. Roy. Soc. 1991, A434, 9–17. [Google Scholar]
- Novikov, E.A.; Stewart, R. Intermittency of turbulence and spectrum of fluctuations in energy-disspation. Izv. Akad. Nauk. SSSR. Ser. Geofiz. 1964, 3, 408–412. [Google Scholar]
- Yaglom, A.M. The influence on the fluctuation in energy dissipation on the shape of turbulent characteristics in the inertial interval. Sov. Phys. Dokl. 1966, 2, 26–30. [Google Scholar]
- Mandelbrot, B.B. Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 1974, 62, 331–350. [Google Scholar] [CrossRef]
- Schertzer, D.; Lovejoy, S. Turbulence and Chaotic Phenomena in Fluids. In Proceedings of the International Symposium on Turbulence and Chaotic Phenomena in Fluids, Kyoto, Japan, 5–10 September 1983; Tasumi, T., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 141–144. [Google Scholar]
- Schertzer, D.; Lovejoy, S. Turbulent Shear Flow; Bradbury, L.J.S., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 7–33. [Google Scholar]
- Schertzer, D.; Lovejoy, S. Physical modeling and Analysis of Rain and Clouds by Anisotropic Scaling of Multiplicative Processes. J. Geophys. Res. 1987, 92, 9693–9714. [Google Scholar] [CrossRef]
- Schertzer, D.; Lovejoy, S.; Schmitt, F.; Chigirinskaya, Y.; Marsan, D. Multifractal cascade dynamics and turbulent intermittency. Fractals 1997, 5, 427–471. [Google Scholar] [CrossRef]
- Schertzer, D.; Lovejoy, S. Hard and Soft Multifractal processes. Phys. A 1992, 185, 187–194. [Google Scholar] [CrossRef]
- Phillips, N.A. The General Circulation of the Atmosphere: A numerical experiment. Q. J. R. Meteorol. Soc. 1956, 82, 123–164. [Google Scholar] [CrossRef]
- Baer, F.; Tribbia, J. On complete filtering of gravity modes through nonlinear initialzation. Mon. Weather Rev. 1977, 115, 272–296. [Google Scholar]
- Machenhauer, B. On the dynaqmics of gravity oscillations in a shallow water model with applications to normal mode intialization. Beitr. Phys. Atmos. 1977, 50, 253–271. [Google Scholar]
- Maxwell, J.C. The Scientific Papers of James Clerk Maxwell; Niven, W.D., Ed.; Cambridge University Press: Cambridge, UK, 1890; Volume 2, p. 373. [Google Scholar]
- Gibbs, J.W. Elementary Principles in Statistical Mechanics Developed with Especial Refernce to the Rational Foundation of Thermodynamics; Scribner’s sons: New York, NY, USA, 1902. [Google Scholar]
- Lorenz, E.N. Deterministic Nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Lorenz, E.N. The predictability of a flow which possesses many scales of motion. Tellus 1969, 21, 289–307. [Google Scholar] [CrossRef]
- Feigenbaum, M.J. The Universal Metric Properties of Nonlilnear Transformations. J. Stat. Phys. 1979, 21, 669–706. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Fractals, Form, Chance and Dimension; Freeman: New York, NY, USA, 1977. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman: New York, NY, USA, 1982. [Google Scholar]
- Schertzer, D.; Lovejoy, S. Generalised scale invariance in turbulent phenomena. Phys.-Chem. Hydrodyn. J. 1985, 6, 623–635. [Google Scholar]
- Lovejoy, S.; Schertzer, D. Scale invariance, symmetries, fractals and stochastic simulations of atmospheric phenomena. Bull. AMS 1986, 67, 21–32. [Google Scholar] [CrossRef]
- Parisi, G.; Frisch, U. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics; Ghil, M., Benzi, R., Parisi, G., Eds.; North Holland: Amsterdam, The Netherlands, 1985; pp. 84–88. [Google Scholar]
- Tuck, A.F. Atmospheric Turbulence: A Molecular Dynamics Perspective; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Tuck, A.F. Theoretical Chemistry and the Calculation of the Atmospheric State. Atmosphere 2021, 12, 727. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D. Extreme Events and Natural Hazards: The Complexity Perspective; Sharma, A.S., Bunde, A., Baker, D.N., Dimri, V.P., Eds.; AGU monographs: Washington, DC, USA, 2012; pp. 231–254. [Google Scholar]
- Lovejoy, S.; Schertzer, D. The Weather and Climate: Emergent Laws and Multifractal Cascades; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Schmitt, F.G.; Huang, Y. Stochastic Analysis of Scaling Times Series: From Turbulence Theory to Applications; Cambridge University Press: Cambridge, UK, 2016; 220p. [Google Scholar]
- Lovejoy, S. The spectra, intermittency and extremes of weather, macroweather and climate. Nat. Sci. Rep. 2018, 8, 12697. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, J.S.; Lovejoy, S.; Schertzer, D. Multifractal earth topography. Nonlinear Process. Geophys. 2006, 13, 541–570. [Google Scholar] [CrossRef]
- Gabriel, P.; Lovejoy, S.; Schertzer, D.; Austin, G.L. Multifractal Analysis of resolution dependence in satellite imagery. Geophys. Res. Lett. 1988, 15, 1373–1376. [Google Scholar] [CrossRef]
- Pandey, G.; Lovejoy, S.; Schertzer, D. Multifractal analysis including extremes of daily river flow series for basis five to two million square kilometres, one day to 75 years. J. Hydrol. 1998, 208, 62–81. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rybski, D.; Braun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of precipitation and river runoff record. J. Geophys. Res. 2006, 111, D01106. [Google Scholar] [CrossRef]
- Nogueira, M.; Barros, A.P.; Miranda, P.M.A. Multifractal properties of embedded convective structures in orographic precipitation: Toward subgrid-scale predictability. Nonlinear Process. Geophys. 2013, 20, 605–620. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Barros, A.P. An evaluation of the statistics of rainfall extremes in rain gauge observations and satellite-based and reanalysis products using Universal Multifractals. J. Hydrometeor. 2010, 11, 388–404. [Google Scholar] [CrossRef] [Green Version]
- Lilley, M.; Lovejoy, S.; Strawbridge, K.; Schertzer, D. 23/9 dimensional anisotropic scaling of passive admixtures using lidar aerosol data. Phys. Rev. E 2004, 70, 36301–36307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovejoy, S.; Schertzer, D.; Allaire, V.; Bourgeois, T.; King, S.; Pinel, J.; Stolle, J. Atmospheric complexity or scale by scale simplicity? Geophys. Res. Lett. 2009, 36, L01801. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, M.; Barros, A.P. The nonconvective/convective structural transition in stochastic scaling of atmospheric fields. J. Geophys. Res. Atmos. 2014, 119, 13771–13794. [Google Scholar] [CrossRef]
- Nogueira, M. The sensitivity of the atmospheric branch of the global water cycle to temperature fluctuations at synoptic to decadal time-scales in different satellite- and model-based products. Clim. Dyn. 2019, 52, 617–636. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D.; Stanway, J.D. Direct Evidence of planetary scale atmospheric cascade dynamics. Phys. Rev. Lett. 2001, 86, 5200–5203. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, S.; Tuck, A.F.; Hovde, S.J.; Schertzer, D. The vertical cascade structure of the atmosphere and multifractal drop sonde outages. J. Geophy. Res. 2009, 114, D07111. [Google Scholar] [CrossRef]
- Lovejoy, S.; Pinel, J.; Schertzer, D. The Global space-time Cascade structure of precipitation: Satellites, gridded gauges and reanalyses. Adv. Water Resour. 2012, 45, 37–50. [Google Scholar] [CrossRef]
- Pinel, J.; Lovejoy, S.; Schertzer, D. The horizontal space-time scaling and cascade structure of the atmosphere and satellite radiances. Atmos. Res. 2014, 140–141, 95–114. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D. Towards a new synthesis for atmospheric dynamics: Space-time cascades. Atmos. Res. 2010, 96, 1–52. [Google Scholar] [CrossRef]
- Chen, W.; Lovejoy, S.; Muller, J.P. Mars’ atmosphere: The sister planet, our statistical twin. J. Geophys. Res. Atmos. 2016, 121, 11968–11988. [Google Scholar] [CrossRef] [Green Version]
- Sedov, L.I. Similarity and Dimensional Methods in Mechanics; Academic Press: Cambridge, MA, USA, 1959. [Google Scholar]
- Schertzer, D.; Tchiguirinskaia, I.; Lovejoy, S.; Tuck, A.F. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply. Atmos. Chem. Phys. 2012, 12, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Noether, E. Invariante Variationsprobleme. Nachr. kgl. Ges. Wiss. Göttingen 1918, 1918, 235–257. [Google Scholar]
- Lovejoy, S.; Tuck, A.F.; Schertzer, D.; Hovde, S.J. Reinterpreting aircraft measurements in anisotropic scaling turbulence. Atmos. Chem. Phys. 2009, 9, 5007–5025. [Google Scholar] [CrossRef] [Green Version]
- Mandelbrot, B. Scalebound or scaling shapes: A useful distinction in the visual arts and in the natural sciences. Leonardo 1981, 14, 43–47. [Google Scholar] [CrossRef]
- Mitchell, J.M. An overview of climatic variability and its causal mechanisms. Quat. Res. 1976, 6, 481–493. [Google Scholar] [CrossRef]
- Lovejoy, S. A voyage through scales, a missing quadrillion and why the climate is not what you expect. Clim. Dyn. 2015, 44, 3187–3210. [Google Scholar] [CrossRef]
- Ghil, M.; Lucarini, V. The physics of climate variability and climate change. Rev. Mod. Phys. 2020, 92, 035002. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D. Haar wavelets, fluctuations and structure functions: Convenient choices for geophysics. Nonlinear Process. Geophys. 2012, 19, 513–527. [Google Scholar] [CrossRef] [Green Version]
- Haar, A. Zur Theorie des orthogonalen Funktionsysteme. Math. Ann. 1910, 69, 331–371. [Google Scholar] [CrossRef]
- Lovejoy, S.; Muller, J.P.; Boisvert, J.P. On Mars too, expect macroweather. Geophys. Res. Lett. 2014, 41, 7694–7700. [Google Scholar] [CrossRef]
- Lovejoy, S. What is climate? EOS 2013, 94, 1–2. [Google Scholar] [CrossRef]
- van Hateren, J.H. A fractal climate response function can simulate global average temperature trends of the modern era and the past millennium. Clim. Dyn. 2013, 40, 2651. [Google Scholar] [CrossRef] [Green Version]
- Rypdal, K.; Østvand, L.; Rypdal, M. Long-range memory in Earth’s surface temperature on time scales from months to centuries. JGR, Atmos. 2013, 118, 7046–7062. [Google Scholar] [CrossRef] [Green Version]
- Rypdal, K. Global temperature response to radiative forcing: Solar cycle versus volcanic eruptions. J. Geophys. Res. 2012, 117, D06115. [Google Scholar] [CrossRef]
- Hébert, R.; Lovejoy, S. The runaway Green’s function effect: Interactive comment on “Global warming projections derived from an observation-based minimal model” by K. Rypdal. Earth Syst. Dyn. 2015, 6, C944–C953. [Google Scholar]
- North, G.R.; Kim, K.Y. Energy Balance Climate Models; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Ziegler, E.; Rehfeld, K. TransEBM v. 1.0: Description, tuning, and validation of a transient model of the Earth’s energy balance in two dimensions. Geosci. Model Devel. Disc. 2020, 14, 2843–2866. [Google Scholar] [CrossRef]
- Qian, W.; Du, J. Anomaly Format of Atmospheric Governing Equations with Climate as a Reference Atmosphere. Meteorology 2022, 1, 127–141. [Google Scholar] [CrossRef]
- Lovejoy, S. The Half-order Energy Balance Equation, Part 1: The homogeneous HEBE and long memories. Earth Syst.Dyn. 2021, 12, 469–487. [Google Scholar] [CrossRef]
- Lovejoy, S. The Half-order Energy Balance Equation, Part 2: The inhomogeneous HEBE and 2D energy balance models. Earth Sys. Dyn. 2021, 12, 489–511. [Google Scholar] [CrossRef]
- Wang, J.; Bras, R.L.; Sivandran, G.; Knox, R.G. A simple method for the estimation of thermal inertia . Geophys. Res. Lett. 2010, 37, L05404. [Google Scholar] [CrossRef]
- Lovejoy, S.; Procyk, R.; Hébert, R.; del Rio Amador, L. The Fractional Energy Balance Equation. Q. J. R. Meteorol. Soc. 2021, 147, 1964–1988. [Google Scholar] [CrossRef]
- Lovejoy, S. Fractional relaxation noises, motions and the fractional energy balance equation. Nonlinear Process. Geophys. 2022; in press. [Google Scholar]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–450. [Google Scholar] [CrossRef]
- Ellerhoff, B.; Rehfeld, K. Probing the timescale dependency of local and global variations in surface air temperature from climate simulations and reconstructions of the last millennia. Phys. Rev. E 2021, 104, 64136. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D.; Varon, D. Do GCMs predict the climate… or macroweather? Earth Syst. Dyn. 2013, 4, 439–454. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, S.; Lambert, F. Spiky Fluctuations and Scaling in High-Resolution EPICA Ice Core Dust Fluxes. Clim. Past 2019, 15, 1999–2017. [Google Scholar] [CrossRef] [Green Version]
- Geoffroy, O.; Saint-Martin, D.; Olivié, D.J.L.; Voldoire, A.; Bellon, G.; Tytéca, S. Transient climate response in a two-layer energy-balance model. part i: Analytical solution and parameter calibration using cmip5 aogcm experiments. J. Clim. 2013, 26, 1841–1857. [Google Scholar] [CrossRef]
- Zhou, C.; Penner, J.E. Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM. Atmos. Chem. Phys. 2017, 17, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Goto, D.; Michibata, T.; Suzuki, K.; Takemura, T.; Tomita, H.; Nakajima, T. Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model. Nat. Commun. 2018, 9, 985. [Google Scholar] [CrossRef]
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau, A.; et al. Bounding Global Aerosol Radiative Forcing of Climate Change. Rev. Geophys. 2020, 58, e2019RG000660. [Google Scholar] [CrossRef] [Green Version]
- Annan, J.D.; Hargreaves, J.C. Reliability of the CMIP3 ensemble. Geophys. Res. Lett. 2010, 37, L02703. [Google Scholar] [CrossRef]
- Weisheimer, A.; Palmer, T.N. On the reliability of seasonal climate forecasts. J. R. Soc. Interface 2014, 11, 20131162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meehl, G.; Arblaster, J.; Fasullo, J.; Hu, A.; Trenberth, K. Model-based evidence of deep-ocean heat uptake during surface temperature hiatus periods. Nat. Clim. Chang. 2011, 1, 360–364. [Google Scholar] [CrossRef]
- Medhaug, I.; Stolpe, M.B.; Fischer, E.M.; Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 2017, 545, 41. [Google Scholar] [CrossRef] [PubMed]
- Lovejoy, S. Using scaling for macroweather forecasting including the pause. Geophys. Res. Lett. 2015, 42, 7148–7155. [Google Scholar] [CrossRef]
- Lovejoy, S.; Hébert, R. A hybrid GCM—Historical scaling method for improved climate projections to 2100. Geophys. Res. Abstr. 2018, 20, 8302, EGU2018-8302. [Google Scholar]
- Manabe, S.; Wetherald, R.T. The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci. 1975, 32, 3. [Google Scholar] [CrossRef]
- Kharin, V.V.; Merryfield, W.J.; Boer, G.J.; Lee, W.S. A Postprocessing Method for Seasonal Forecasts Using Temporally and Spatially Smoothed Statistics. Mon. Weather Rev. 2017, 145, 3545–3561. [Google Scholar] [CrossRef]
- Li, C.; Zwiers, F.; Zhang, X.; Li, G.; Sun, Y.; Wehner, M. Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models. J. Clim. 2021, 34, 3441–3460. [Google Scholar] [CrossRef]
- Buizza, R.; Miller, M.; Palmer, T.N. Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Q. J. R. Meteorol. Soc. 1999, 125, 2887–2908. [Google Scholar] [CrossRef]
- Palmer, T.N. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic paramterisation in weather and climate prediction models. Q. J. R. Meteorol. Soc. 2001, 127, 279–304. [Google Scholar] [CrossRef]
- Schertzer, D.; Lovejoy, S. Space/Time Variability and Interdependance for Various Hydrological Processes; Feddes, R.A., Ed.; Cambridge University Press: Cambridge, UK, 1995; pp. 153–173. [Google Scholar]
- Schertzer, D.; Tchiguirinskaia, I. Multifractal vector fields and stochastic Clifford algebra. Chaos 2015, 25, 123127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovejoy, S. Encyclopedia of Mathematical Geosciences. In Encyclopedia of Earth Sciences Series; Sagar, B.S.D., Cheng, Q., McKinley, J., Agterberg, F., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Taylor, G.I. Statistical theory of turbulence. Proc. R. Soc. 1935, 151, 421–478. [Google Scholar] [CrossRef] [Green Version]
- Karman, T.; Howarth, L. On the statistical theory of isotropic turbulence. Proc. R. Soc. A Math. Phys. Sci. 1938, 164, 192–215. [Google Scholar] [CrossRef]
- Bolgiano, R. Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 1959, 64, 2226. [Google Scholar] [CrossRef]
- Obukhov, A. Effect of archimedean forces on the structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR 1959, 125, 1246. [Google Scholar]
- Corrsin, S. On the spectrum of Isotropic Temperature Fluctuations in an isotropic Turbulence. J. Appl. Phys. 1951, 22, 469–473. [Google Scholar] [CrossRef]
- Obukhov, A. Structure of the temperature field in a turbulent flow. Izv. Akad. Nauk. SSSR. Ser. Geogr. I Geofiz 1949, 13, 55–69. [Google Scholar]
- Fjortoft, R. On the changes in the spectral distribution of kinetic energy in two dimensional, nondivergent flow. Tellus 1953, 7, 168–176. [Google Scholar]
- Kraichnan, R.H. Inertial ranges in two-dimensional turbulence. Phys. Fluids 1967, 10, 1417–1423. [Google Scholar] [CrossRef] [Green Version]
- Charney, J.G. Geostrophic Turbulence. J. Atmos. Sci. 1971, 28, 1087. [Google Scholar] [CrossRef]
- Van der Hoven, I. Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J. Meteorol. 1957, 14, 160–164. [Google Scholar] [CrossRef]
- Schertzer, D.; Lovejoy, S. Elliptical turbulence in the atmosphere. In Proceedings of the Fourth Symposium on Turbulent Shear Flows, Karlshule, West Germany, 1–8 November 1983. [Google Scholar]
- Morel, P.; Larchevêque, M. Relative dispersion of constant level balloons in the 200 mb general circulation. J. Atmos. Sci. 1974, 31, 2189–2196. [Google Scholar] [CrossRef]
- Lacorta, G.; Aurell, E.; Legras, B.; Vulpiani, A. Evidence for a k−5/3 spectrum from the EOLE Lagrangian balloons in the lower stratosphere. J. Atmos. Sci. 2004, 61, 2936–2942. [Google Scholar] [CrossRef] [Green Version]
- Nastrom, G.D.; Gage, K.S. A first look at wave number spectra from GASP data. Tellus 1983, 35, 383. [Google Scholar] [CrossRef] [Green Version]
- Nastrom, G.D.; Gage, K.S. A climatology of atmospheric wavenumber spectra of wind and temperature by commercial aircraft. J. Atmos. Sci. 1985, 42, 950–960. [Google Scholar] [CrossRef]
- Lindborg, E. Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 1999, 388, 259–288. [Google Scholar] [CrossRef] [Green Version]
- Lilly, D.K. Two-dimensional turbulence generated by energy sources at two scales. J. Atmos. Sci. 1989, 46, 2026–2030. [Google Scholar] [CrossRef]
- Högström, U.; Smedman, A.N.; Bergström, H. A Case Study Of Two-Dimensional Stratified Turbulence. J. Atmos. Sci. 1999, 56, 959–976. [Google Scholar] [CrossRef]
- Smith, K.S. The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci 2004, 61, 937–941. [Google Scholar] [CrossRef]
- Stolle, J.; Lovejoy, S.; Schertzer, D. The temporal cascade structure and space-time relations for reanalyses and Global Circulation models. Q. J. R. Meteorol. Soc. 2012, 138, 1895–1913. [Google Scholar] [CrossRef]
- Lovejoy, S.; Tuck, A.F.; Hovde, S.J.; Schertzer, D. Is isotropic turbulence relevant in the atmosphere? Geophys. Res. Lett. 2007, 34, L14802. [Google Scholar] [CrossRef]
- Endlich, R.M.; Singleton, R.C.; Kaufman, J.W. Spectral Analyes of detailed vertical wind profiles. J. Atmos. Sci. 1969, 26, 1030–1041. [Google Scholar] [CrossRef]
- Adelfang, S.I. On the relation between wind shears over various intervals. J. Appl. Meteorol. 1971, 10, 156–159. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D.; Tsonis, A.A. Functional Box-Counting and Multiple Elliptical Dimensions in rain. Science 1987, 235, 1036–1038. [Google Scholar] [CrossRef]
- Pinel, J.; Lovejoy, S.; Schertzer, D.; Tuck, A.F. Joint horizontal—Vertical anisotropic scaling, isobaric and isoheight wind statistics from aircraft data. Geophys. Res. Lett. 2012, 39, L11803. [Google Scholar] [CrossRef]
- Schertzer, D.; Larchevêque, M.; Lovejoy, S. Chaos, Fractals and Models 96; Salvadori, G., Ed.; Italian University Press: Bologna, Italy, 1998; pp. 53–64. [Google Scholar]
- Obukhov, A.M. On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk SSSR 1941, 32, 22–24. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovejoy, S. The Future of Climate Modelling: Weather Details, Macroweather Stochastics—Or Both? Meteorology 2022, 1, 414-449. https://doi.org/10.3390/meteorology1040027
Lovejoy S. The Future of Climate Modelling: Weather Details, Macroweather Stochastics—Or Both? Meteorology. 2022; 1(4):414-449. https://doi.org/10.3390/meteorology1040027
Chicago/Turabian StyleLovejoy, Shaun. 2022. "The Future of Climate Modelling: Weather Details, Macroweather Stochastics—Or Both?" Meteorology 1, no. 4: 414-449. https://doi.org/10.3390/meteorology1040027
APA StyleLovejoy, S. (2022). The Future of Climate Modelling: Weather Details, Macroweather Stochastics—Or Both? Meteorology, 1(4), 414-449. https://doi.org/10.3390/meteorology1040027