Tropical and Subtropical South American Intraseasonal Variability: A Normal-Mode Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite and Reanalysis ERA5
2.2. Filtering and Empirical Orthogonal Function (EOF) Technique
2.3. Linear Regression
2.4. Global Normal-Mode Function (NMF) Expansion
2.5. Computation of the South American Intraseasonal Variability in Modal Space
3. Results
3.1. EOF Results
3.2. South America Intraseasonal Variability
3.2.1. South American 30–90-day ISV
3.2.2. South American 20–30-Day ISV
3.2.3. South American 10–20-Day ISV
3.3. Normal-Mode Components of South American Intraseasonal Variability
3.3.1. Normal-Mode Decomposition: 30–90-day ISV
3.3.2. Normal-Mode Decomposition: 20–30-day ISV
3.3.3. Normal Mode Decomposition: 10–20-day ISV
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ISV | Intraseasonal variability |
SACZ | South Atlantic Convergence Zone |
CESA | Central-east South America |
MJO | Madden-Julian Oscillation |
PSA | Pacific-South America |
EOF | Empirical Orthogonal Functions |
SOM | Self-organizing maps |
NMF | Normal mode functions |
OLR | Outgoing Longwave Radiation |
NOAA | National Oceanic and Atmospheric Administration |
ECMWF | European Centre for Medium-Range Weather Forecasts |
FFT | Fast Fourier Transform |
OMI | OLR-based MJO index |
IGW | Inertio-gravity waves |
RH | Rossby-Haurwitz waves |
MRG | Mixed Rossby-gravity waves |
K | Kelvin waves |
ROT | Rotational waves |
Appendix A. Observed Upper-Level Horizontal Structure A
Appendix B. Reconstructed Upper-Level Fields
References
- Liebmann, B.; Kiladis, G.N.; Marengo, J.; Ambrizzi, T.; Glick, J.D. Submonthly Convective Variability over South America and the South Atlantic Convergence Zone. J. Clim. 1999, 12, 1877–1891. [Google Scholar] [CrossRef]
- Paegle, J.N.; Byerle, L.A.; Mo, K.C. Intraseasonal Modulation of South American Summer Precipitation. Mon. Weather Rev. 2000, 128, 837–850. [Google Scholar] [CrossRef]
- Silverio, K.C.; Grimm, A.M. Southern African monsoon: Intraseasonal variability and monsoon indices. Clim. Dyn. 2022, 58, 1193–1220. [Google Scholar] [CrossRef]
- Grimm, A.M.; Reason, C.J.C. Intraseasonal Teleconnections between South America and South Africa. J. Clim. 2015, 28, 9489–9497. [Google Scholar] [CrossRef]
- Kikuchi, K.; Wang, B. Global Perspective of the Quasi-Biweekly Oscillation. J. Clim. 2009, 22, 1340–1359. [Google Scholar] [CrossRef]
- Grimm, A.M. Madden–Julian Oscillation impacts on South American summer monsoon season: Precipitation anomalies, extreme events, teleconnections, and role in the MJO cycle. Clim. Dyn. 2019, 53, 907–932. [Google Scholar] [CrossRef]
- Casarin, D.P.; Kousky, V.E. Anomalias de precipitação no sul do Brasil e variações na circulação atmosférica. Rev. Bras. Meteorol. 1986, 2, 83–90. [Google Scholar]
- Nogués-Paegle, J.; Mo, K.C. Alternating Wet and Dry Conditions over South America during Summer. Mon. Weather Rev. 1997, 125, 279–291. [Google Scholar] [CrossRef]
- Satyamurty, P.; Nobre, C.A.; Silva Dias, P.L. South America; Karoly, D.J., Vincent, D.G., Eds.; American Meteorological Society: Boston, MA, USA, 1998; pp. 119–139. [Google Scholar] [CrossRef]
- Alvarez, M.S.; Vera, C.S.; Kiladis, G.N.; Liebmann, B. Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America. Clim. Dyn. 2016, 46, 245–262. [Google Scholar] [CrossRef]
- Vera, C.; Alvarez, M.S.; Gonzalez, P.L.M.; Liebmann, B.; Kiladis, G.N. Seasonal cycle of precipitation variability in South America on intraseasonal timescales. Clim. Dyn. 2018, 51, 1991–2001. [Google Scholar] [CrossRef]
- Mayta, V.C.; Ambrizzi, T.; Espinoza, J.C.; Silva Dias, P.L. The role of the Madden-Julian oscillation on the Amazon Basin intraseasonal rainfall variability. Int. J. Climatol. 2019, 39, 343–360. [Google Scholar] [CrossRef]
- Grimm, A.M.; Hakoyama, L.R.; Scheibe, L.A. Active and break phases of the South American summer monsoon: MJO influence and subseasonal prediction. Clim. Dyn. 2021, 56, 3603–3624. [Google Scholar] [CrossRef]
- Mayta, V.C.; Adames, A.F. Moist Thermodynamics of Convectively Coupled Waves over the Western Hemisphere. J. Clim. 2023, 37, 1–35. [Google Scholar] [CrossRef]
- Jones, C.; Carvalho, L.M.V. Active and Break Phases in the South American Monsoon System. J. Clim. 2002, 15, 905–914. [Google Scholar] [CrossRef]
- Castro Cunningham, C.A.; De Albuquerque Cavalcanti, I.F. Intraseasonal modes of variability affecting the South Atlantic Convergence Zone. Int. J. Climatol. 2006, 26, 1165–1180. [Google Scholar] [CrossRef]
- Grimm, A.M.; Silva Dias, P.L. Analysis of Tropical-Extratropical Interactions with Influence Functions of a Barotropic Model. J. Atmos. Sci. 1995, 52, 3538–3555. [Google Scholar] [CrossRef]
- Gonzalez, P.L.M.; Vera, C.S. Summer precipitation variability over South America on long and short intraseasonal timescales. Clim. Dyn. 2014, 43, 1993–2007. [Google Scholar] [CrossRef]
- Gelbrecht, M.; Boers, N.; Kurths, J. Phase coherence between precipitation in South America and Rossby waves. Sci. Adv. 2018, 4, eaau3191. [Google Scholar] [CrossRef]
- Mo, K.C.; Higgins, R.W. The Pacific–South American Modes and Tropical Convection during the Southern Hemisphere Winter. Mon. Weather Rev. 1998, 126, 1581–1596. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Wallace, J.M. Summertime Incursions of Midlatitude Air into Subtropical and Tropical South America. Mon. Weather Rev. 1998, 126, 2713–2733. [Google Scholar] [CrossRef]
- Garreaud, R.D. Cold Air Incursions over Subtropical South America: Mean Structure and Dynamics. Mon. Weather Rev. 2000, 128, 2544–2559. [Google Scholar] [CrossRef]
- Lupo, A.R.; Nocera, J.J.; Bosart, L.F.; Hoffman, E.G.; Knight, D.J. South American Cold Surges: Types, Composites, and Case Studies. Mon. Weather Rev. 2001, 129, 1021–1041. [Google Scholar] [CrossRef]
- Chu, J.E.; Wang, B.; Lee, J.Y.; Ha, K.J. Boreal Summer Intraseasonal Phases Identified by Nonlinear Multivariate Empirical Orthogonal Function–Based Self-Organizing Map (ESOM) Analysis. J. Clim. 2017, 30, 3513–3528. [Google Scholar] [CrossRef]
- Kasahara, A.; Puri, K. Spectral representation of three-dimensional global data by expansion in normal mode functions. Mon. Weather Rev. 1981, 109, 37–51. [Google Scholar] [CrossRef]
- Tanaka, H. Global Energetics Analysis by Expansion into Three-Dimensional Normal Mode Functions during the FGGE Winter. J. Meteorol. Soc. Jpn. Ser. II 1985, 63, 180–200. [Google Scholar] [CrossRef]
- Žagar, N.; Franzke, C.L. Systematic decomposition of the Madden-Julian Oscillation into balanced and inertio-gravity components. Geophys. Res. Lett. 2015, 42, 6829–6835. [Google Scholar] [CrossRef]
- Kitsios, V.; O’Kane, T.J.; Žagar, N. A Reduced-Order Representation of the Madden–Julian Oscillation Based on Reanalyzed Normal Mode Coherences. J. Atmos. Sci. 2019, 76, 2463–2480. [Google Scholar] [CrossRef]
- Castanheira, J.M.; Marques, C.A.F. Convectively coupled equatorial-wave diagnosis using three-dimensional normal modes. Q. J. R. Meteorol. Soc. 2015, 141, 2776–2792. [Google Scholar] [CrossRef]
- Franzke, C.L.E.; Jelic, D.; Lee, S.; Feldstein, S.B. Systematic decomposition of the MJO and its Northern Hemispheric extratropical response into Rossby and inertio-gravity components. Q. J. R. Meteorol. Soc. 2019, 145, 1147–1164. [Google Scholar] [CrossRef]
- Raphaldini, B.; Wakate Teruya, A.S.; Silva Dias, P.L.; Mayta, V.R.C.; Takara, V.J. Normal Mode Perspective on the 2016 QBO Disruption: Evidence for a Basic State Regime Transition. Geophys. Res. Lett. 2020, 47, e2020GL087274. [Google Scholar] [CrossRef]
- Baer, F. An Alternate Scale Representation of Atmospheric Energy Spectra. J. Atmos. Sci. 1972, 29, 649–664. [Google Scholar] [CrossRef]
- Kasahara, A. Effect of Zonal Flows on the Free Oscillations of a Barotropic Atmosphere. J. Atmos. Sci. 1980, 37, 917–929. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. Description of a complete (interpolated) outgoing long-wave radiation dataset. Bull. Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; Schepers, D.; et al. ERA5 hourly data on single levels from 1979 to present. In Copernicus Climate Change Service (C3S) Climate Data Store (CDS); ECMWF: Reading, UK, 2018. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Dias, J.; Straub, K.H.; Wheeler, M.C.; Tulich, S.N.; Kikuchi, K.; Weickmann, K.M.; Ventrice, M.J. A Comparison of OLR and Circulation-Based Indices for Tracking the MJO. Mon. Weather Rev. 2014, 142, 1697–1715. [Google Scholar] [CrossRef]
- Livezey, R.E.; Chen, W.Y. Statistical field significance and its determination by Monte Carlo Techniques. Mon. Weather Rev. 1983, 111, 46–59. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Weickmann, K.M. Circulation Anomalies Associated with Tropical Convection during Northern Winter. Mon. Weather Rev. 1992, 120, 1900–1923. [Google Scholar] [CrossRef]
- Mayta, V.C.; Kiladis, G.N.; Dias, J.; Dias, P.L.S.; Gehne, M. Convectively Coupled Kelvin Waves Over Tropical South America. J. Clim. 2021, 34, 6531–6547. [Google Scholar] [CrossRef]
- Žagar, N.; Kasahara, A.; Terasaki, K.; Tribbia, J.; Tanaka, H. Normal-mode function representation of global 3-D data sets: Open-access software for the atmospheric research community. Geosci. Model Dev. 2015, 8, 1169–1195. [Google Scholar] [CrossRef]
- Wheeler, M.; Kiladis, G. Convectively-coupled equatorial waves: Analysis of clouds in the wavenumber-frequency domain. J. Atmos. Sci. 1999, 56, 374–399. [Google Scholar] [CrossRef]
- Adames, A.F.; Powell, S.W.; Ahmed, F.; Mayta, V.C.; Neelin, J.D. Tropical Precipitation Evolution in a Buoyancy-Budget Framework. J. Atmos. Sci. 2021, 78, 509–528. [Google Scholar] [CrossRef]
- Snide, C.E.; Adames, Á.F.; Powell, S.W.; Mayta, V.C. The role of large-scale moistening by adiabatic lifting in the Madden-Julian Oscillation convective onset. J. Clim. 2022, 35, 269–284. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Wheeler, M.C.; Haertel, P.T.; Straub, K.H.; Roundy, P.E. Convectively coupled equatorial waves. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Adames, Á.F.; Kim, D. The MJO as a Dispersive, Convectively Coupled Moisture Wave: Theory and Observations. J. Atmos. Sci. 2016, 73, 913–941. [Google Scholar] [CrossRef]
- Mayta, V.C.; Adames, Á.F.; Ahmed, F. Westward-propagating Moisture Mode over the Tropical Western Hemisphere. Geophys. Res. Lett. 2022, 49, e2022GL097799. [Google Scholar] [CrossRef]
- Wheeler, M.; Hendon, H.H. An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Weather Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Straub, K.H.; Haertel, P.T. Zonal and Vertical Structure of the Madden–Julian Oscillation. J. Atmos. Sci. 2005, 62, 2790–2809. [Google Scholar] [CrossRef]
- Jiang, X.; Adames, Á.F.; Kim, D.; Maloney, E.D.; Lin, H.; Kim, H.; Zhang, C.; DeMott, C.A.; Klingaman, N.P. Fifty Years of Research on the Madden-Julian Oscillation: Recent Progress, Challenges, and Perspectives. J. Geophys. Res. Atmos. 2020, 125, e2019JD030911. [Google Scholar] [CrossRef]
- Mayta, V.C.; Silva, N.P.; Ambrizzi, T.; Dias, P.L.S.; Espinoza, J.C. Assessing the skill of all-season diverse Madden–Julian oscillation indices for the intraseasonal Amazon precipitation. Clim. Dyn. 2020, 54, 3729–3749. [Google Scholar] [CrossRef]
- Kikuchi, K.; Wang, B.; Kajikawa, Y. Bimodal representation of the tropical intraseasonal oscillation. Clim. Dyn. 2012, 10, 1989–2000. [Google Scholar] [CrossRef]
- Wang, S.; Ma, D.; Sobel, A.H.; Tippett, M.K. Propagation Characteristics of BSISO Indices. Geophys. Res. Lett. 2018, 45, 9934–9943. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Weickmann, K.M. Horizontal Structure and Seasonality of Large-Scale Circulations Associated with Submonthly Tropical Convection. Mon. Weather Rev. 1997, 125, 1997–2013. [Google Scholar] [CrossRef]
- Cavalcanti, I.F.A.; Kayano, M.T. High-frequency patterns of the atmospheric circulation over the southern hemisphere and South America. Meteorol. Atmos. Phys. 1999, 69, 179–193. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. The South Atlantic Convergence Zone: Intensity, Form, Persistence, and Relationships with Intraseasonal to Interannual Activity and Extreme Rainfall. J. Clim. 2004, 17, 88–108. [Google Scholar] [CrossRef]
- Jin, F.; Hoskins, B.J. The Direct Response to Tropical Heating in a Baroclinic Atmosphere. J. Atmos. Sci. 1995, 52, 307–319. [Google Scholar] [CrossRef]
- Mori, M.; Watanabe, M. The Growth and Triggering Mechanisms of the PNA: A MJO-PNA Coherence. J. Meteorol. Soc. Jpn. Ser. II 2008, 86, 213–236. [Google Scholar] [CrossRef]
- Silva Dias, P.L.; Schubert, W.H.; DeMaria, M. Large-Scale Response of the Tropical Atmosphere to Transient Convection. J. Atmos. Sci. 1983, 40, 2689–2707. [Google Scholar] [CrossRef]
- Raphaldini, B.; Teruya, A.S.; Leite da Silva Dias, P.; Massaroppe, L.; Takahashi, D.Y. Stratospheric ozone and quasi-biennial oscillation (QBO) interaction with the tropical troposphere on intraseasonal and interannual timescales: A normal-mode perspective. Earth Syst. Dyn. 2021, 12, 83–101. [Google Scholar] [CrossRef]
- Raphaldini, B.; Teruya, A.; Raupp, C.; Silva-Dias, P.; Takahashi, D. Information flow between MJO-related waves: A network approach on the wave space. Eur. Phys. J. Spec. Top. 2021, 230, 3009–3017. [Google Scholar] [CrossRef]
- Žagar, N.; Jelić, D.; Blaauw, M.; Bechtold, P. Energy Spectra and Inertia–Gravity Waves in Global Analyses. J. Atmos. Sci. 2017, 74, 2447–2466. [Google Scholar] [CrossRef]
- Hendon, H.H.; Liebmann, B. Organization of convection within the Madden-Julian oscillation. J. Geophys. Res. 1994, 99, 8073–8083. [Google Scholar]
- Adames, A.F.; Wallace, J.M. Three-Dimensional Structure and Evolution of the MJO and Its Relation to the Mean Flow. J. Atmos. Sci. 2014, 71, 2007–2026. [Google Scholar] [CrossRef]
- Silva Dias, P.L.; Bonatti, J.P. A preliminary study of the observed vertical mode structure of the summer circulation over tropical South America. Tellus A Dyn. Meteorol. Oceanogr. 1985, 37, 185–195. [Google Scholar] [CrossRef]
- Liebmann, B.; Kiladis, G.N.; Allured, D.; Vera, C.S.; Jones, C.; Carvalho, L.M.V.; Bladé, I.; Gonzales, P.L.M. Mechanisms Associated with Large Daily Rainfall Events in Northeast Brazil. J. Clim. 2011, 24, 376–396. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Taschetto, A.S.; Gupta, A.S.; Foltz, G.R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 2019, 12, 620–626. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teruya, A.S.W.; Mayta, V.C.; Raphaldini, B.; Silva Dias, P.L.; Sapucci, C.R. Tropical and Subtropical South American Intraseasonal Variability: A Normal-Mode Approach. Meteorology 2024, 3, 141-160. https://doi.org/10.3390/meteorology3020007
Teruya ASW, Mayta VC, Raphaldini B, Silva Dias PL, Sapucci CR. Tropical and Subtropical South American Intraseasonal Variability: A Normal-Mode Approach. Meteorology. 2024; 3(2):141-160. https://doi.org/10.3390/meteorology3020007
Chicago/Turabian StyleTeruya, André S. W., Víctor C. Mayta, Breno Raphaldini, Pedro L. Silva Dias, and Camila R. Sapucci. 2024. "Tropical and Subtropical South American Intraseasonal Variability: A Normal-Mode Approach" Meteorology 3, no. 2: 141-160. https://doi.org/10.3390/meteorology3020007
APA StyleTeruya, A. S. W., Mayta, V. C., Raphaldini, B., Silva Dias, P. L., & Sapucci, C. R. (2024). Tropical and Subtropical South American Intraseasonal Variability: A Normal-Mode Approach. Meteorology, 3(2), 141-160. https://doi.org/10.3390/meteorology3020007