Use of CAMS near Real-Time Aerosols in the HARMONIE-AROME NWP Model
Abstract
:1. Introduction
2. Description of CAMS Aerosol Types
2.1. Sea Salt
2.2. Desert Dust
2.3. Organic Matter
2.4. Black Carbon
2.5. Sulfates
2.6. Nitrates and Ammonium
3. Advection and Removal of Aerosols
3.1. Wet Deposition
3.2. Aerosol Sedimentation
4. Calculation of the Particle Number Concentration (PNC), Cloud Condensation Nuclei (CCN), and Cloud Droplet Number Concentration (CDNC)
4.1. Cloud Condensation Nuclei (CCN) and Cloud Droplet Number Concentration (CDNC)
4.2. Ambient Supersaturation
5. Description of the Microphysical Parameterizations in HARMONIE-AROME
5.1. Autoconversion
5.2. Accretion of Cloud Droplets
5.3. Cloud Droplet Sedimentation
5.4. Riming of Snow
6. Impact on Radiation
7. Test Cases
7.1. Warm Rain Case
7.2. Snow Case
7.3. Radiation Cases
7.4. Fog Case
8. Verification Results
9. Clear Sky Index
10. Discussion
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOD | Aerosol Optical Depth. |
BC | Black Carbon. |
CAMS | Copernicus Atmospheric Monitoring Services. |
CCN | Cloud Condensation Nuclei. |
CDNC | Cloud Droplet Number Concentration. |
CSI | Clear Sky Index |
DD | Desert Dust. |
IFN | Ice Forming Nuclei. |
IFS | Integrated Forecast System. |
ECMWF | European Centre for Medium-Range Weather Forecasts. |
LAM | Limited Area Model. |
LBC | Lateral Boundary Conditions. |
MMR | Mass Mixing Ratio. |
NRT | Near Real-Time. |
OM | Organic Matter. |
PNC | Particle Number Concentration. |
SS | Sea Salt. |
SU | Sulphate. |
Appendix A. Correction of the Cubic Radius of the Log Normal Size Distribution
Appendix B. Estimation of Correction of Supersaturation by the Presence of Large Sea Salt Particles
Appendix C. Cloud Droplet Terminal Velocity Calculation
References
- Byčenkienė, S.; Ulevicius, V.; Prokopčiuk, N.; Jasinevičienė, D. Observations of the aerosol particle number concentration in the marine boundary layer over the south-eastern Baltic Sea. Oceanologia 2013, 55, 573–597. [Google Scholar] [CrossRef]
- Meinander, O.; Kouznetsov, R.; Uppstu, A.; Sofiev, M.; Kaakinen, A.; Salminen, J.; Rontu, L.; Welti, A.; Francis, D.; Piedehierro, A.A.; et al. African dust transport and deposition modelling verified through a citizen science campaign in Finland. Sci. Rep. 2023, 13, 21379. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, L.; Andrae, U.; Aspelien, T.; Batrak, Y.; Calvo, J.; de Rooy, W.; Gleeson, E.; Hansen-Sass, B.; Homleid, M.; Hortal, M.; et al. The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system. Mon. Weather. Rev. 2017, 145, 1919–1935. [Google Scholar] [CrossRef]
- Rontu, L.; Gleeson, E.; Martin Perez, D.; Pagh Nielsen, K.; Toll, V. Sensitivity of radiative fluxes to aerosols in the ALADIN-HIRLAM numerical weather prediction system. Atmosphere 2020, 11, 205. [Google Scholar] [CrossRef]
- Mazoyer, M.; Burnet, F.; Denjean, C. Experimental study on the evolution of droplet size distribution during the fog life cycle. Atmos. Chem. Phys. 2022, 22, 11305–11321. [Google Scholar] [CrossRef]
- Maalampi, P. Studying the Effect of a New Aerosol Option on HARMONIE-AROME Sea Fog Forecasts. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2024. Available online: http://urn.fi/URN:NBN:fi:hulib-202403111471 (accessed on 17 April 2024).
- Gultepe, I.; Isaac, G. Aircraft observations of cloud droplet number concentration: Implications for climate studies. Q. J. R. Meteorol. Soc. 2004, 130, 2377–2390. [Google Scholar] [CrossRef]
- Gultepe, I.; Isaac, G. Scale effects on averaging of cloud droplet and aerosol number concentrations: Observations and models. J. Clim. 1999, 12, 1268–1279. [Google Scholar] [CrossRef]
- Rémy, S.; Kipling, Z.; Flemming, J.; Boucher, O.; Nabat, P.; Michou, M.; Bozzo, A.; Ades, M.; Huijnen, V.; Benedetti, A.; et al. Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1). Geosci. Model Dev. 2019, 12, 4627–4659. [Google Scholar] [CrossRef]
- Rieger, D.; Bangert, M.; Bischoff-Gauss, I.; Förstner, J.; Lundgren, K.; Reinert, D.; Schröter, J.; Vogel, H.; Zängl, G.; Ruhnke, R.; et al. ICON–ART 1.0—A new online-coupled model system from the global to regional scale. Geosci. Model Dev. 2015, 8, 1659–1676. [Google Scholar] [CrossRef]
- WRF-Chem. Weather Research and Forecasting Model Coupled to Chemistry. Available online: https://ruc.noaa.gov/wrf/wrf-chem/ (accessed on 19 April 2024).
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online coupled regional meteorology chemistry models in Europe: Current status and prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef]
- El Amraoui, L.; Plu, M.; Guidard, V.; Cornut, F.; Bacles, M. A Pre-Operational System Based on the Assimilation of MODIS Aerosol Optical Depth in the MOCAGE Chemical Transport Model. Remote. Sens. 2022, 14, 1949. [Google Scholar] [CrossRef]
- SILAM. System for Integrated modeLling of Atmospheric coMposition. Available online: https://silam.fmi.fi (accessed on 19 April 2024).
- Sofiev, M.; Vankevich, R.; Lotjonen, M.; Prank, M.; Petukhov, V.; Ermakova, T.; Koskinen, J.; Kukkonen, J. An operational system for the assimilation of the satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmos. Chem. Phys. 2009, 9, 6833–6847. [Google Scholar] [CrossRef]
- ACCORD. A Consortium for COnvection-Scale Modelling Research and Development. Available online: https://www.umr-cnrm.fr/accord/ (accessed on 19 April 2024).
- Rémy, S.; Kipling, Z.; Huijnen, V.; Flemming, J.; Nabat, P.; Michou, M.; Ades, M.; Engelen, R.; Peuch, V.H. Description and evaluation of the tropospheric aerosol scheme in the Integrated Forecasting System (IFS-AER, cycle 47R1) of ECMWF. Geosci. Model Dev. 2022, 15, 4881–4912. [Google Scholar] [CrossRef]
- Petters, M.; Kreidenweis, S. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef]
- Morcrette, J.J.; Beljaars, A.; Benedetti, A.; Jones, L.; Boucher, O. Sea-salt and dust aerosols in the ECMWF IFS model. Geophys. Res. Lett. 2008, 35, L24813. [Google Scholar] [CrossRef]
- García, R.; García, O.; Cuevas, E.; Cachorro, V.; Romero-Campos, P.; Ramos, R.; De Frutos, A. Solar radiation measurements compared to simulations at the BSRN Izaña station. Mineral dust radiative forcing and efficiency study. J. Geophys. Res. Atmos. 2014, 119, 179–194. [Google Scholar] [CrossRef]
- Anttila, T.; Kerminen, V.M. Influence of organic compounds on the cloud droplet activation: A model investigation considering the volatility, water solubility, and surface activity of organic matter. J. Geophys. Res. Atmos. 2002, 107, AAC-12. [Google Scholar] [CrossRef]
- Reddington, C.L.; McMeeking, G.; Mann, G.W.; Coe, H.; Frontoso, M.G.; Liu, D.; Flynn, M.; Spracklen, D.V.; Carslaw, K.S. The mass and number size distributions of black carbon aerosol over Europe. Atmos. Chem. Phys. 2013, 13, 4917–4939. [Google Scholar] [CrossRef]
- Berglen, T.F.; Myhre, G.; Isaksen, I.S.; Vestreng, V.; Smith, S.J. Sulphate trends in Europe: Are we able to model the recent observed decrease. Tellus Chem. Phys. Meteorol. 2007, 59, 773–786. [Google Scholar] [CrossRef]
- Hauglustaine, D.A.; Balkanski, Y.; Schulz, M. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate. Atmos. Chem. Phys. 2014, 14, 11031–11063. [Google Scholar] [CrossRef]
- Morcrette, J.J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, A.; Kaiser, J.; Razinger, M.; et al. Aerosol analysis and forecast in the European Centre for medium-range weather forecasts integrated forecast system: Forward modeling. J. Geophys. Res. Atmos. 2009, 114, D06206. [Google Scholar] [CrossRef]
- Abdul-Razzak, H.; Ghan, S.J.; Rivera-Carpio, C. A parameterization of aerosol activation: 1. Single aerosol type. J. Geophys. Res. Atmos. 1998, 103, 6123–6131. [Google Scholar] [CrossRef]
- Abdul-Razzak, H.; Ghan, S.J. A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res. Atmos. 2000, 105, 6837–6844. [Google Scholar] [CrossRef]
- Tulet, P.; Crassier, V.; Cousin, F.; Suhre, K.; Rosset, R. ORILAM, a three-moment lognormal aerosol scheme for mesoscale atmospheric model: Online coupling into the Meso-NH-C model and validation on the Escompte campaign. J. Geophys. Res. Atmos. 2005, 110, D18201. [Google Scholar] [CrossRef]
- Reutter, P.; Su, H.; Trentmann, J.; Simmel, M.; Rose, D.; Gunthe, S.; Wernli, H.; Andreae, M.; Pöschl, U. Aerosol-and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys. 2009, 9, 7067–7080. [Google Scholar] [CrossRef]
- Kreidenweis, S.; Koehler, K.; DeMott, P.; Prenni, A.; Carrico, C.; Ervens, B. Water activity and activation diameters from hygroscopicity data-Part I: Theory and application to inorganic salts. Atmos. Chem. Phys. 2005, 5, 1357–1370. [Google Scholar] [CrossRef]
- Shen, C.; Zhao, C.; Ma, N.; Tao, J.; Zhao, G.; Yu, Y.; Kuang, Y. Method to estimate water vapor supersaturation in the ambient activation process using aerosol and droplet measurement data. J. Geophys. Res. Atmos. 2018, 123, 10–606. [Google Scholar] [CrossRef]
- Anttila, T.; Brus, D.; Jaatinen, A.; Hyvärinen, A.P.; Kivekäs, N.; Romakkaniemi, S.; Komppula, M.; Lihavainen, H. Relationships between particles, cloud condensation nuclei and cloud droplet activation during the third Pallas Cloud Experiment. Atmos. Chem. Phys. 2012, 12, 11435–11450. [Google Scholar] [CrossRef]
- Hudson, J.G.; Noble, S. CCN and cloud droplet concentrations at a remote ocean site. Geophys. Res. Lett. 2009, 36, L13812. [Google Scholar] [CrossRef]
- Moteki, N.; Mori, T.; Matsui, H.; Ohata, S. Observational constraint of in-cloud supersaturation for simulations of aerosol rainout in atmospheric models. NPJ Clim. Atmos. Sci. 2019, 2, 1–11. [Google Scholar] [CrossRef]
- Gerber, H. Supersaturation and droplet spectral evolution in fog. J. Atmos. Sci. 1991, 48, 2569–2588. [Google Scholar] [CrossRef]
- Mazoyer, M.; Burnet, F.; Roberts, G.; Haeffelin, M.; Dupont, J.C.; Elias, T. Experimental study of the aerosol impact on fog microphysics. In Atmos. Chem. Phys. 2019, 19, 4323–4344. [Google Scholar] [CrossRef]
- Khvorostyanov, V.I.; Curry, J.A. Thermodynamics, Kinetics, and Microphysics of Clouds; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ghan, S.J.; Guzman, G.; Abdul-Razzak, H. Competition between sea salt and sulfate particles as cloud condensation nuclei. J. Atmos. Sci. 1998, 55, 3340–3347. [Google Scholar] [CrossRef]
- Duplessis, P.; Bhatia, S.; Hartery, S.; Wheeler, M.J.; Chang, R.Y.W. Microphysics of aerosol, fog and droplet residuals on the Canadian Atlantic coast. Atmos. Res. 2021, 264, 105859. [Google Scholar] [CrossRef]
- Müller, M.; Homleid, M.; Ivarsson, K.I.; Køltzow, M.A.; Lindskog, M.; Midtbø, K.H.; Andrae, U.; Aspelien, T.; Berggren, L.; Bjørge, D.; et al. AROME-MetCoOp: A Nordic Convective-Scale Operational Weather Prediction Model. Weather. Forecast. 2017, 32, 609–627. [Google Scholar] [CrossRef]
- Khairoutdinov, M.; Kogan, Y. A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Weather. Rev. 2000, 128, 229–243. [Google Scholar] [CrossRef]
- Yau, M.K.; Rogers, R.R. A Short Course in Cloud Physics; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Ivarsson, K.I. Decription of the OCND2-option in the ICE3 clouds and stratiform condensation scheme in AROME. In ALADIN-HIRLAM Newsletter No. 5; 2015; pp. 83–87. Available online: https://www.umr-cnrm.fr/aladin/IMG/pdf/nl5.pdf (accessed on 22 April 2024).
- Contreras Osorio, S.; Martín Pérez, D.; Ivarsson, K.I.; Nielsen, K.P.; de Rooy, W.C.; Gleeson, E.; McAufield, E. Impact of the Microphysics in HARMONIE-AROME on Fog. Atmosphere 2022, 13, 2127. [Google Scholar] [CrossRef]
- Farley, R.D.; Price, P.E.; Orville, H.D.; Hirsch, J.H. On the numerical simulation of graupel/hail initiation via the riming of snow in bulk water microphysical cloud models. J. Appl. Meteorol. 1989, 28, 1128–1131. [Google Scholar] [CrossRef]
- Lohmann, U. Can anthropogenic aerosols decrease the snowfall rate? J. Atmos. Sci. 2004, 61, 2457–2468. [Google Scholar] [CrossRef]
- Gleeson, E.; Toll, V.; Nielsen, K.P.; Rontu, L.; Mašek, J. Effects of aerosols on clear-sky solar radiation in the ALADIN-HIRLAM NWP system. Atmos. Chem. Phys. 2016, 16, 5933–5948. [Google Scholar] [CrossRef]
- ECMWF. IFS documentation – Cy47r3 part IV: Physical processes, Chapter 2. Eur. Cent.-Medium-Range Weather. Forecast. 2020, 1, 7–33. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2021/20198-ifs-documentation-cy47r3-part-vi-physical-processes.pdf (accessed on 25 February 2024).
- Tegen, I.; Hollrig, P.; Chin, M.; Fung, I.; Jacob, D.; Penner, J. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res. Atmos. 1997, 102, 23895–23915. [Google Scholar] [CrossRef]
- Tanré, D.; Geleyn, J.; Slingo, J. First results of the introduction of an advanced aerosol-radiation interaction in the ECMWF low resolution global model. Aerosols Their Clim. Eff. 1984, 133, 177. [Google Scholar]
- Bozzo, A.; Benedetti, A.; Flemming, J.; Kipling, Z.; Rémy, S. An aerosol climatology for global models based on the tropospheric aerosol scheme in the Integrated Forecasting System of ECMWF. Geosci. Model Dev. 2020, 13, 1007–1034. [Google Scholar] [CrossRef]
- Toll, V.; Gleeson, E.; Nielsen, K.; Männik, A.; Mašek, J.; Rontu, L.; Post, P. Impacts of the direct radiative effect of aerosols in numerical weather prediction over Europe using the ALADIN-HIRLAM NWP system. Atmos. Res. 2016, 172, 163–173. [Google Scholar] [CrossRef]
- Rontu, L.; Pietikäinen, J.P.; Martin Perez, D. Renewal of aerosol data for ALADIN-HIRLAM radiation parametrizations. Adv. Sci. Res. 2019, 16, 129–136. [Google Scholar] [CrossRef]
- Nielsen, K.P.; Gleeson, E.; Rontu, L. Radiation sensitivity tests of the HARMONIE 37h1 NWP model. Geosci. Model Dev. 2014, 7, 1433–1449. [Google Scholar] [CrossRef]
- Martin, G.; Johnson, D.; Spice, A. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci. 1994, 51, 1823–1842. [Google Scholar] [CrossRef]
- Petersen, C.; Nielsen, N.W. Diagnosis of Visibility in DMI-HIRLAM; DMI Scientific Report 00-11. 2000. Available online: https://www.dmi.dk/fileadmin/Rapporter/SR/sr00-11.pdf (accessed on 22 April 2024).
- Savijärvi, H. Fast radiation parameterization schemes for mesoscale and short-range forecast models. J. Appl. Meteorol. Climatol. 1990, 29, 437–447. [Google Scholar] [CrossRef]
- Gleeson, E.; Nielsen, K.; Toll, V.; Rontu, L.; Whelan, E. Shortwave Radiation Experiments in HARMONIE. Tests of the cloud inhomogeneity factor and a new cloud liquid optical property scheme compared to observations. Aladin-Hirlam Newsl. 2015, 5, 92–106. [Google Scholar]
- Mašek, J.; Geleyn, J.F.; Brožková, R.; Giot, O.; Achom, H.O.; Kuma, P. Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps. Q. J. R. Meteorol. Soc. 2016, 142, 304–326. [Google Scholar] [CrossRef]
- Geleyn, J.F.; Mašek, J.; Brožková, R.; Kuma, P.; Degrauwe, D.; Hello, G.; Pristov, N. Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing. Q. J. R. Meteorol. Soc. 2017, 143, 1313–1335. [Google Scholar] [CrossRef]
- Hogan, R.J.; Bozzo, A. A Flexible and Efficient Radiation Scheme for the ECMWF Model. J. Adv. Model. Earth Syst. 2018, 10, 1990–2008. [Google Scholar] [CrossRef]
- Mordy, W. Computations of the growth by condensation of a population of cloud droplets. Tellus 1959, 11, 16–44. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Beard, K. Terminal velocity adjustment for cloud and precipitation drops aloft. J. Atmos. Sci. 1976, 33, 851–864. [Google Scholar] [CrossRef]
- Foote, G.B.; Du Toit, P. Terminal velocity of raindrops aloft. J. Appl. Meteorol. 1969, 8, 249–253. [Google Scholar] [CrossRef]
Aerosol Species | Bin Limits (μm) | ||||||
---|---|---|---|---|---|---|---|
Sea salt 1 (film drop mode) | 0.03–0.5 | 2160 | 0.1992 | 1.9 | 0.318 | 1.28 | 4048.34 |
Sea salt 2 (jet drop mode) | 0.5–5.0 | 2160 | 1.992 | 2.0 | 0.255 | 1.28 | 432.98 |
Sea salt 3 (spume drop mode) | 5.0–20 | 2160 | 1.992 | 2.0 | 7.284 | 1.28 | 122.77 |
Desert dust 1 (fine dust bin) | 0.03–0.55 | 2610 | 0.29 | 2.0 | 0.151 | 0.0 | 2496.68 |
Desert dust 2 (coarse dust bin) | 0.55–0.9 | 2610 | 0.29 | 2.0 | 1.610 | 0.0 | 955.08 |
Desert dust 3 (super-coarse dust bin) | 0.9–20 | 2610 | 0.29 | 2.0 | 13.140 | 0.0 | 406.53 |
Hydrophobic organic matter | 0.05–20 | 2000 | 0.021 | 2.24 | 0.894 | 0.0 | 2321.03 |
Hydrophilic organic matter | 0.05–20 | 2000 | 0.021 | 2.24 | 0.894 | 0.3 | 3481.84 |
Hydrophobic black carbon | 0.005–0.5 | 1000 | 0.0118 | 2.0 | 1.119 | 0.0 | 13,487.80 |
Hydrophilic black carbon | 0.005–0.5 | 1000 | 0.0118 | 2.0 | 1.119 | 0.1 | 13,487.80 |
Sulfates | 0.005–20 | 1760 | 0.0355 | 2.0 | 1.002 | 0.6 | 6296.94 |
Nitrate fine mode | 0.005–0.9 | 1730 | 0.0355 | 2.0 | 0.997 | 0.64 | 7361.85 |
Nitrate coarse mode | 0.9–20 | 1400 | 1.992 | 2.0 | 1.022 | 0.9 | 7425.71 |
Ammonium | 0.005–20 | 1760 | 0.0355 | 2.0 | 1.002 | 0.6 | 483.48 |
Aerosol Species | |
---|---|
Sea salt 1 (film drop mode) | 0.9 |
Sea salt 2 (jet drop mode) | 0.9 |
Sea salt 3 (spume drop mode) | 0.9 |
Desert dust 1 | 0.7 |
Desert dust 2 | 0.7 |
Desert dust 3 | 0.7 |
Hydrophobic organic matter | 0.0 |
Hydrophilic organic matter | 0.7 |
Hydrophobic black carbon | 0.0 |
Hydrophilic black carbon | 0.7 |
Sulfates | 0.7 |
Nitrate fine mode | 0.4 |
Nitrate coarse mode | 0.4 |
Ammonium | 0.4 |
REFERENCE | CAMSNRT | |||
---|---|---|---|---|
AUTUMN | BIAS | STDV | BIAS | STDV |
Surface Pressure | 0.15 | 0.81 | 0.04 | 0.80 |
Wind Speed | 0.69 | 1.48 | 0.71 | 1.47 |
2 m Temperature | −0.34 | 1.46 | −0.21 | 1.43 |
Relative Humidity | −0.55 | 10.64 | −1.36 | 10.68 |
Cloud Cover | 0.32 | 2.72 | 0.23 | 2.75 |
24 h Accumulated Precipitation | −0.27 | 8.68 | −0.05 | 8.57 |
SPRING | BIAS | STDV | BIAS | STDV |
Surface Pressure | −0.05 | 0.90 | −0.10 | 0.88 |
Wind Speed | 0.65 | 1.49 | 0.69 | 1.49 |
2 m Temperature | −0.03 | 1.56 | 0.10 | 1.54 |
Relative Humidity | −4.14 | 11.39 | −4.44 | 11.27 |
Cloud Cover | 0.23 | 2.83 | 0.21 | 2.84 |
24 h Accumulated Precipitation | −1.08 | 6.14 | −0.62 | 5.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín Pérez, D.; Gleeson, E.; Maalampi, P.; Rontu, L. Use of CAMS near Real-Time Aerosols in the HARMONIE-AROME NWP Model. Meteorology 2024, 3, 161-190. https://doi.org/10.3390/meteorology3020008
Martín Pérez D, Gleeson E, Maalampi P, Rontu L. Use of CAMS near Real-Time Aerosols in the HARMONIE-AROME NWP Model. Meteorology. 2024; 3(2):161-190. https://doi.org/10.3390/meteorology3020008
Chicago/Turabian StyleMartín Pérez, Daniel, Emily Gleeson, Panu Maalampi, and Laura Rontu. 2024. "Use of CAMS near Real-Time Aerosols in the HARMONIE-AROME NWP Model" Meteorology 3, no. 2: 161-190. https://doi.org/10.3390/meteorology3020008
APA StyleMartín Pérez, D., Gleeson, E., Maalampi, P., & Rontu, L. (2024). Use of CAMS near Real-Time Aerosols in the HARMONIE-AROME NWP Model. Meteorology, 3(2), 161-190. https://doi.org/10.3390/meteorology3020008