The Cycle 46 Configuration of the HARMONIE-AROME Forecast Model
Abstract
:1. Introduction
- AROME (Applications of Research to Operations at Mesoscale)
- HARMONIE-AROME (HIRLAM–ALADIN Research on Mesoscale Operational NWP in Euromed)
- ALARO (Aire Limitee Adaptation/Application de la Recherche a l’Operationnel).
2. Dynamics, Model Configuration, and System Aspects
3. Upper-Air Physics
3.1. Radiation
3.2. Cloud Microphysics
3.2.1. Cloud Droplet Number Concentration
3.2.2. Effects of CDNC Obtained from the NRT Aerosol Fields
3.2.3. OCND2: Clouds in Cold Conditions
- The separation between liquid water and ice water processes was improved. This means that the statistical cloud scheme (See Section 3.3.3) only deals with cloud liquid water, including cases when temperatures are below freezing. All ice processes are described by the OCND2 version of the ICE3 scheme.
- Evaporation/deposition of cloud ice is a conversion between ice and vapor and not between ice and liquid.
- The deposition rate of the ice species was reduced.
- The cloud cover, from the point of view of the forecast users (the public), was modified to account for the lower optical thickness of ice clouds compared to water clouds.
- The ice nucleating particle number concentration is reduced when the temperature is between 0 °C and 25 °C. The main purpose of this is to slow down the conversion from cloud liquid water to ice, snow, or graupel.
- To support the production of supercooled rain, threshold values were introduced for converting supercooled rain into graupel or snow.
- Calculations of saturation pressure are avoided when the saturation pressure is near or above atmospheric pressure. This is implemented for computational reasons and affects calculations in the stratosphere only.
- A bugfix was implemented to solve a technical problem, which revealed spurious ice-clouds (see Figure 9). The ICE3 scheme should be active when the amount of any non-vapor water species exceeds some low threshold or when the air temperature is below freezing. Unfortunately, for technical reasons, this did not always happen when the second criteria was satisfied. Due to that, areas with sufficient water species were surrounded by areas with little cloud ice water, as shown in Figure 9.
3.2.4. ICE-T: To Improve the Representation of Supercooled Liquid Water
- Stricter conditions for ice nucleation.
- Less efficient collision–collection of liquid water by solid hydrometeors.
- A variable rain intercept parameter, which allows for smaller droplets when condensation and coalescence are the primary sources.
3.3. Shallow Convection, Turbulence, and Statistical Cloud Scheme
3.3.1. Shallow Convection
3.3.2. Turbulence
3.3.3. Statistical Cloud Scheme
- The derivation of the thermodynamic coefficients. This is performed in a proper way now.
- Adding of the covariance term for temperature and humidity.
- The dissipation length scale in the cloud scheme is now consistent with the one in the turbulence scheme.
- The description of the dissipation of the variances. Now it is more consistent with the literature.
- Removing of the erroneous factor 2 for the convective contribution to the variance.
3.3.4. Wind Farm Parametrization
4. Surface Physics
4.1. Physiography
4.2. The Urban and Nature Tiles
4.3. Snow Melt Adjustment
4.4. Stable Boundary Layer
4.5. Orographic Enhancement of Momentum Fluxes
4.6. The Sea Tile
4.7. The Inland Water Tile
5. Upcoming Developments in HARMONIE-AROME
5.1. Dynamics and Model Configuration
5.2. Radiation
5.3. Cloud Microphysics
5.4. Scale Aware Shallow Convection
5.5. Surface
6. General Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. External Aerosol Data Used in HARMONIE-AROME
References
- Bengtsson, L.; Andrae, U.; Aspelien, T.; Batrak, Y.; Calvo, J.; de Rooy, W.; Gleeson, E.; Hansen-Sass, B.; Homleid, M.; Hortal, M.; et al. The HARMONIE–AROME Model Configuration in the ALADIN–HIRLAM NWP System. Mon. Weather Rev. 2017, 145, 1919–1935. [Google Scholar] [CrossRef]
- Bubnová, R.; Hello, G.; Bénard, P.; Geleyn, J.F. Integration of the Fully Elastic Equations Cast in the Hydrostatic Pressure Terrain-Following Coordinate in the Framework of the ARPEGE/Aladin NWP System. Mon. Weather Rev. 1995, 123, 515–535. [Google Scholar] [CrossRef]
- Bénard, P.; Vivoda, J.; Mašek, J.; Smolíková, P.; Yessad, K.; Smith, C.; Brožková, R.; Geleyn, J.F. Dynamical kernel of the Aladin–NH spectral limited-area model: Revised formulation and sensitivity experiments. Q. J. R. Meteorol. Soc. 2010, 136, 155–169. [Google Scholar] [CrossRef]
- Termonia, P.; Fischer, C.; Bazile, E.; Bouyssel, F.; Brožková, R.; Bénard, P.; Bochenek, B.; Degrauwe, D.; Derková, M.; El Khatib, R.; et al. The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1. Geosci. Model Dev. 2018, 11, 257–281. [Google Scholar] [CrossRef]
- Seity, Y.; Brousseau, P.; Malardel, S.; Hello, G.; Bénard, P.; Bouttier, F.; Lac, C.; Masson, V. The AROME-France Convective-Scale Operational Model. Mon. Weather Rev. 2011, 139, 976–991. [Google Scholar] [CrossRef]
- Laprise, R. The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable. Mon. Weather Rev. 1992, 120, 197–207. [Google Scholar] [CrossRef]
- Simmons, A.J.; Burridge, D.M. An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates. Mon. Weather Rev. 1981, 109, 758–766. [Google Scholar] [CrossRef]
- Hortal, M. The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Q. J. R. Meteorol. Soc. 2002, 128, 1671–1687. [Google Scholar] [CrossRef]
- Davies, H.C. A lateral boundary formulation for multi-level prediction models. Q. J. R. Meteorol. Soc. 1976, 102, 405–418. [Google Scholar] [CrossRef]
- Váňa, F.; Bénard, P.; Geleyn, J.F.; Simon, A.; Seity, Y. Semi-Lagrangian advection scheme with controlled damping: An alternative to nonlinear horizontal diffusion in a numerical weather prediction model. Q. J. R. Meteorol. Soc. 2008, 134, 523–537. [Google Scholar] [CrossRef]
- Malardel, S.; Ricard, D. An alternative cell-averaged departure point reconstruction for pointwise semi-Lagrangian transport schemes. Q. J. R. Meteorol. Soc. 2015, 141, 2114–2126. [Google Scholar] [CrossRef]
- Lang, S.T.K.; Dawson, A.; Diamantakis, M.; Dueben, P.; Hatfield, S.; Leutbecher, M.; Palmer, T.; Prates, F.; Roberts, C.D.; Sandu, I.; et al. More accuracy with less precision. Q. J. R. Meteorol. Soc. 2021, 147, 4358–4370. [Google Scholar] [CrossRef]
- Malardel, S. MUSC: (Modèle Unifié, Simple Colonne) for Arpege-Aladin-Arome-Alaro-Hirlam-(IFS) (CY31T1 Version). Technical Report, Météo France. 2004. Available online: https://www.umr-cnrm.fr/gmapdoc/IMG/pdf_DOC_1D_MODEL.pdf (accessed on 24 May 2024).
- ECMWF. Operational Implementation 12 May 2015. Part IV: Physical Processes. European Centre for Medium-Range Weather Forecasts IFS Doc. Cy41r1. Technical Report, ECMWF, Reading, 2015. Available online: https://www.ecmwf.int/en/elibrary/79697-ifs-documentation-cy41r2-part-iv-physical-processes (accessed on 27 October 2024).
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Mascart, P.J.; Bougeault, P. The Meso-NH Atmospheric Simulation System: Scientific Documentation. Part III: Physics. Technical Report, Météo-France, 2011. Available online: http://mesonh.aero.obs-mip.fr/mesonh/dir_doc/book1_m48_19jan2009/scidoc_p3.pdf (accessed on 27 October 2024).
- Mašek, J.; Geleyn, J.F.; Brožková, R.; Giot, O.; Achom, H.O.; Kuma, P. Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps. Q. J. R. Meteorol. Soc. 2016, 142, 304–326. [Google Scholar] [CrossRef]
- Geleyn, J.F.; Mašek, J.; Brožková, R.; Kuma, P.; Degrauwe, D.; Hello, G.; Pristov, N. Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing. Q. J. R. Meteorol. Soc. 2017, 143, 1313–1335. [Google Scholar] [CrossRef]
- Kangas, M.; Rontu, L.; Fortelius, C.; Aurela, M.; Poikonen, A. Weather model verification using Sodankylä mast measurements. Geosci. Instrum. Methods Data Syst. 2016, 5, 75–84. [Google Scholar] [CrossRef]
- Rontu, L.; Lindfors, A.V. Comparison of radiation parametrizations within the HARMONIE–AROME NWP model. Adv. Sci. Res. 2018, 15, 81–90. [Google Scholar] [CrossRef]
- Forster, P.M.; Smith, C.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Hall, B.; Hauser, M.; Ribes, A.; Rosen, D.; Gillett, N.P.; et al. Indicators of Global Climate Change 2023: Annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 2024, 16, 2625–2658. [Google Scholar] [CrossRef]
- Tegen, I.; Hollrig, P.; Chin, M.; Fung, I.; Jacob, D.; Penner, J. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res. Atmos. 1997, 102, 23895–23915. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Martín Pérez, D.; Gleeson, E.; Maalampi, P.; Rontu, L. Use of CAMS near Real-Time Aerosols in the HARMONIE-AROME NWP Model. Meteorology 2024, 3, 161–190. [Google Scholar] [CrossRef]
- Bozzo, A.; Benedetti, A.; Flemming, J.; Kipling, Z.; Rémy, S. An aerosol climatology for global models based on the tropospheric aerosol scheme in the Integrated Forecasting System of ECMWF. Geosci. Model Dev. 2020, 13, 1007–1034. [Google Scholar] [CrossRef]
- Kettler, T. Fog Forecasting in HARMONIE—A Case Study to Current Issues with the Overestimation of Fog in HARMONIE. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2020. [Google Scholar]
- Smith, E.A.; Shi, L. Surface Forcing of the Infrared Cooling Profile over the Tibetan Plateau. Part I: Influence of Relative Longwave Radiative Heating at High Altitude. J. Atmos. Sci. 1992, 49, 805–822. [Google Scholar] [CrossRef]
- Elsasser, W.M. Heat Transfer by Infrared Radiation in the Atmosphere; Harvard University: Milton, MA, USA, 1942. [Google Scholar]
- Lascaux, F.; Richard, E.; Pinty, J.P. Numerical simulations of three different MAP IOPs and the associated microphysical processes. Q. J. R. Meteorol. Soc. 2006, 132, 1907–1926. [Google Scholar] [CrossRef]
- Pinty, J.P.; Jabouille, P. A Mixed-Phased Cloud Parameterization for Use in a Mesoscale Non-Hydrostatic Model: Simulations of a Squall Line and of Orographic Precipitation. In Proceedings of the Conference on Cloud Physics, Everett, WA, USA, 24–28 August 1998; pp. 217–220. [Google Scholar]
- Bouteloup, Y.; Seity, Y.; Bazile, E. Description of the sedimentation scheme used operationally in all Météo eo-France NWP models. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 300–311. [Google Scholar] [CrossRef]
- Contreras Osorio, S.; Martín Pérez, D.; Ivarsson, K.I.; Nielsen, K.P.; de Rooy, W.C.; Gleeson, E.; McAufield, E. Impact of the Microphysics in HARMONIE-AROME on Fog. Atmosphere 2022, 13, 2127. [Google Scholar] [CrossRef]
- Meinander, O.; Kouznetsov, R.; Uppstu, A.; Sofiev, M.; Kaakinen, A.; Salminen, J.; Rontu, L.; Welti, A.; Francis, D.; Piedehierro, A.A.; et al. African dust transport and deposition modelling verified through a citizen science campaign in Finland. Sci. Rep. 2023, 13, 21379. [Google Scholar] [CrossRef]
- Müller, M.; Homleid, M.; Ivarsson, K.I.; Morten, A.ØK.; Lindskog, M.; Midtbø, K.H.; Andrae, U.; Aspelien, T.; Berggren, L.; Bjørge, D.; et al. AROME-MetCoOp: A Nordic Convective-Scale Operational Weather Prediction Model. Weather Forecast. 2017, 32, 609–627. [Google Scholar] [CrossRef]
- Engdahl, B.J.K.; Nygaard, B.E.K.; Losnedal, V.; Thompson, G.; Bengtsson, L. Effects of the ICE-T microphysics scheme in HARMONIE-AROME on estimated ice loads on transmission lines. Cold Reg. Sci. Technol. 2020, 179, 103139. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Engdahl, B.J.K.; Thompson, G.; Bengtsson, L. Improving the representation of supercooled liquid water in the HARMONIE-AROME weather forecast model. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2020, 72, 1–18. [Google Scholar] [CrossRef]
- Engdahl, B.J.K.; Carlsen, T.; Køltzow, M.; Storelvmo, T. The Ability of the ICE-T Microphysics Scheme in HARMONIE-AROME to Predict Aircraft Icing. Weather Forecast. 2022, 37, 205–217. [Google Scholar] [CrossRef]
- de Rooy, W.C.; Siebesma, A.; Baas, P.; Lenderink, G.; de Roode, S.; de Vries, H.; van Meijgaard, E.; Meirink, J.F.; Tijm, S.; van ’t Veen, B. Model development in practice: A comprehensive update to the boundary layer schemes in HARMONIE-AROME cycle 40. Geosci. Model Dev. 2022, 15, 1513–1543. [Google Scholar] [CrossRef]
- Kähnert, M.; Sodemann, H.; de Rooy, W.C.; Valkonen, T.M. On the Utility of Individual Tendency Output: Revealing Interactions between Parameterized Processes during a Marine Cold Air Outbreak. Weather Forecast. 2021, 36, 1985–2000. [Google Scholar] [CrossRef]
- Neggers, R.; Kohler, M.; Beljaars, A. A dual mass flux framework for boundary layer convection. Part I: Transport. J. Atmos. Sci. 2009, 66, 1464–1487. [Google Scholar] [CrossRef]
- de Roode, S.; Duynkerke, P.; Siebesma, A. Analogies Between Mass-Flux and Reynolds-Averaged Equations. J. Atmos. Sci. 2000, 57, 1585–1598. [Google Scholar] [CrossRef]
- Heus, T.; van Heerwaarden, C.C.; Jonker, H.J.J.; Pier Siebesma, A.; Axelsen, S.; van den Dries, K.; Geoffroy, O.; Moene, A.F.; Pino, D.; de Roode, S.R.; et al. Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications. Geosci. Model Dev. 2010, 3, 415–444. [Google Scholar] [CrossRef]
- Brown, A.R.; Cederwall, R.T.; Chlond, A.; Duynkerke, P.G.; Golaz, J.C.; Khairoutdinov, M.; Lewellen, D.C.; Lock, A.P.; MacVean, M.K.; Moeng, C.H.; et al. Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q. J. R. Meteorol. Soc. 2002, 128, 1075–1093. [Google Scholar] [CrossRef]
- Lenderink, G.; Holtslag, A. An Updated Length-Scale Formulation for Turbulent Mixing in Clear and Cloudy Boundary Layers. Q. J. R. Meteorol. Soc. 2004, 130, 3405–3427. [Google Scholar] [CrossRef]
- Cuxart, J.; Bougeault, P.; Redelsperger, J.L. A Turbulence Scheme Allowing for Mesoscale and Large-Eddy Simulations. Q. J. R. Meteorol. Soc. 2000, 126, 1–30. [Google Scholar] [CrossRef]
- de Rooy, W.C. The Fog Above Sea Problem: Part 1 Analysis. ALADIN-HIRLAM Newsl. 2014, 2, 9–16. [Google Scholar]
- de Rooy, W.C.; de Vries, H. Harmonie Verification and Evaluation. Technical Report 70, HIRLAM, 2017. Available online: https://hirlam.org/index.php/hirlam-documentation/doc_download/1805-hirlam-technicalreport-70 (accessed on 27 October 2024).
- Baas, P.; de Roode, S.R.; Lenderink, G. The scaling behaviour of a turbulent kinetic energy closure model for stably stratified conditions. Bound. Layer Meteorol. 2008, 127, 17–36. [Google Scholar] [CrossRef]
- Baas, P.; Van De Wiel, B.; Van der Linden, S.; Bosveld, F. From near-neutral to strongly stratified: Adequately modelling the clear-sky nocturnal boundary layer at Cabauw. Bound. Layer Meteorol. 2018, 166, 217–238. [Google Scholar] [CrossRef]
- Sommeria, G.; Deardorff, J. Subgrid-Scale Condensation in Models of Non-Precipitating Clouds. J. Atmos. Sci. 1977, 34, 344–355. [Google Scholar] [CrossRef]
- Van Stratum, B.; Theeuwes, N.; Barkmeijer, J.; van Ulft, B.; Wijnant, I. A One-Year-Long Evaluation of a Wind-Farm Parameterization in HARMONIE-AROME. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002947. [Google Scholar] [CrossRef]
- Lampert, A.; Bärfuss, K.; Platis, A.; Siedersleben, S.; Djath, B.; Cañadillas, B.; Hunger, R.; Hankers, R.; Bitter, M.; Feuerle, T.; et al. In situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight. Earth Syst. Sci. Data 2020, 12, 935–946. [Google Scholar] [CrossRef]
- Le Moigne, P. Surfex scientific documentation. Météo-France 2018, 18, 2. [Google Scholar]
- Faroux, S.; Kaptué Tchuenté, A.T.; Roujean, J.L.; Masson, V.; Martin, E.; Le Moigne, P. ECOCLIMAP-II/Europe: A twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models. Geosci. Model Dev. 2013, 6, 563–582. [Google Scholar] [CrossRef]
- Randolph Glacier Inventory—A Dataset of Global Glacier Outlines; National Snow and Ice Data Center, University of Colorado Boulder: Boulder, CO, USA, 2023. [CrossRef]
- Urbański, J.A. Monitoring and classification of high Arctic lakes in the Svalbard Islands using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102911. [Google Scholar] [CrossRef]
- Karami, M.; Westergaard-Nielsen, A.; Normand, S.; Treier, U.A.; Elberling, B.; Hansen, B.U. A phenology-based approach to the classification of Arctic tundra ecosystems in Greenland. ISPRS J. Photogramm. Remote Sens. 2018, 146, 518–529. [Google Scholar] [CrossRef]
- CORINE Land Cover 2018 (Raster 100 m), Europe, 6-Yearly—Version 2020_20u1, May 2020. Available online: https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac (accessed on 27 October 2024).
- Porter, C.; Howat, I.; Noh, M.J.; Husby, E.; Khuvis, S.; Danish, E.; Tomko, K.; Gardiner, J.; Negrete, A.; Yadav, B.; et al. ArcticDEM—Mosaics, Version 4.1, 2023. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/3VDC4W (accessed on 27 October 2024).
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Choulga, M.; Kourzeneva, E.; Zakharova, E.; Doganovsky, A. Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling. Tellus 2014, 66A. [Google Scholar] [CrossRef]
- Kourzeneva, E.; Martin, E.; Batrak, Y.; Le Moigne, P. Climate data for parameterisation of lakes in Numerical Weather Prediction models. Tellus 2012, 64A, 21295. [Google Scholar] [CrossRef]
- Masson, V. A physically-based scheme for the urban energy budget in atmospheric models. Bound. Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Boone, A.; Calvet, J.C.; Noilhan, J. Inclusion of a third soil layer in a land surface scheme using the force–restore method. J. Appl. Meteor. 1999, 38, 1611–1630. [Google Scholar] [CrossRef]
- Douville, H.; Royer, J.F.; Mahfouf, J.F. A new snow parameterization for theMétéo-France climate model. Part I: Validation in stand-alone experiments. Clim. Dyn. 1995, 12, 21–35. [Google Scholar] [CrossRef]
- Atlaskin, E.; Vihma, T. Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland. Q. J. R. Meteorol. Soc. 2012, 138, 1440–1451. [Google Scholar] [CrossRef]
- Kähnert, M.; Sodemann, H.; Remes, T.M.; Fortelius, C.; Bazile, E.; Esau, I. Spatial variability of nocturnal stability regimes in an operational weather prediction model. Bound. Layer Meteorol. 2023, 186, 373–397. [Google Scholar] [CrossRef]
- Svensson, G.; Holtslag, A.A.M. Analysis of Model Results for the Turning of the Wind and Related Momentum Fluxes in the Stable Boundary Layer. Bound. Layer Meteorol. 2009, 132, 261–277. [Google Scholar] [CrossRef]
- Viterbo, P.; Beljaars, A.; Mahfouf, J.F.; Teixeira, J. The representation of soil moisture freezing and its impact on the stable boundary layer. Q. J. R. Meteorol. Soc. 1999, 125, 2401–2426. [Google Scholar] [CrossRef]
- Sandu, I.; Beljaars, A.; Bechtold, P.; Mauritsen, T.; Balsamo, G. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst. 2013, 5, 117–133. [Google Scholar] [CrossRef]
- Homleid, M. Improving model performance in stable situations by using a pragmatic shift in the drag calculations—XRISHIFT. ACCORD Newsletter 2022, 2, 96–108. [Google Scholar]
- Kähnert, M.; Sodemann, H.; Remes, T.M.; Homleid, M. Impact of adjustments in surface-atmosphere coupling for model forecasts in stable conditions. Weather. Forecast. 2024. submitted. [Google Scholar]
- Mason, P.J. On the parameterization of the orographic drag; Technical Report, ECMWF. In Proceedings of the Seminar on Physical Parametrization for Numerical Models of the Atmosphere, Mason, UK, 18–21 March 1985. [Google Scholar]
- Georgelin, M.; Richard, E.; Petitdidier, M.; Druilhet, A. Impact of subgrid-scale orography parametrization on the simulation orographic flows. Mon. Wea. Rev. 1994, 122, 1509–1522. [Google Scholar] [CrossRef]
- Wood, N.; Brown, A.R.; Hewer, F.E. Parametrizing the effects of orography on the boundary layer: An alternative to effective roughness lengths. Q. J. R. Meteorol. Soc. 2001, 127, 759–777. [Google Scholar] [CrossRef]
- Beljaars, A.C.M.; Brown, A.R.; Wood, N. A new parametrization of turbulent orographic form drag. Q. J. R. Meteor. Soc. 2004, 130, 1327–1347. [Google Scholar] [CrossRef]
- Rontu, L. A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus A Dyn. Meteorol. Oceanogr. 2006, 58, 69–81. [Google Scholar] [CrossRef]
- Calvo, J.; Campins, J.; María Díez, M.; Escribà, P.; Martín, D.; Gema Morales, G.; Sánchez-Arriola, J.; Viana, S. Evaluation of HARMONIE-AROME cycle 43h2.1 at AEMET. Newsletter 2022, 43, 166–172. [Google Scholar]
- Bougeault, P.; Lacarrere, P. Parameterisation of orography-induced turbulence in a meso-beta scale Model. Mon. Wea. Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Madec, G.; Bell, M.; Balker, A.; Bricaud, C.; Bruciaferry, D.; Castrillo, M.; Calvert, D.; Chanut, J.; Clementi, E.; Coward, A.; et al. NEMO Ocean Engine Reference Manual. Sci. Notes Ipsl Clim. Model. Cent. 2023, 4.2.1, 8167700. [Google Scholar] [CrossRef]
- Belušić, D.; de Vries, H.; Dobler, A.; Landgren, O.; Lind, P.; Lindstedt, D.; Pedersen, R.A.; Sánchez-Perrino, J.C.; Toivonen, E.; van Ulft, B.; et al. HCLIM38: A flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales. Geosci. Model Dev. 2020, 13, 1311–1333. [Google Scholar] [CrossRef]
- Belamari, S. Report on Uncertainty Estimates of an Optimal Bulk Formulation for Surface Turbulent Fluxes. Marine Environment and Security for the European Area–Integrated Project MERSEA IP Deliverable D4.1.2; 2005; pp. 1–29. Available online: https://www.researchgate.net/publication/312626114_Report_on_uncertainty_estimates_of_an_optimal_bulk_formulation_for_surface_turbulent_fluxes (accessed on 27 October 2024).
- van den Brekel, S. Validating the Surface Flux ECUME and ECUME6 Parameterizations Used in the HARMONIE Model. Master’s Thesis, Delft, The Netherlands, 2023. Available online: http://repository.tudelft.nl/ (accessed on 27 October 2024).
- Batrak, Y.; Kourzeneva, E.; Homleid, M. Implementation of a simple thermodynamic sea ice scheme, SICE version 1.0-38h1, within the ALADIN–HIRLAM numerical weather prediction system version 38h1. Geosci. Model Dev. 2018, 11, 3347–3368. [Google Scholar] [CrossRef]
- Batrak, Y.; Müller, M. On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice. Nat. Commun. 2019, 10, 4170. [Google Scholar] [CrossRef] [PubMed]
- Mironov, D.; Heise, E.; Kourzeneva, E.; Ritter, B.; Schneider, N.; Terzhevik, A. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res. 2010, 15, 218–230. [Google Scholar]
- Semmler, T.; Cheng, B.; Yang, Y.; Rontu, L. Snow and ice on Bear Lake (Alaska)—Sensitivity experiments with two lake ice models. Tellus 2012, 64, 17339. [Google Scholar] [CrossRef]
- Wedi, N.P.; Polichtchouk, I.; Dueben, P.; Anantharaj, V.G.; Bauer, P.; Boussetta, S.; Browne, P.; Deconinck, W.; Gaudin, W.; Hadade, I.; et al. A Baseline for Global Weather and Climate Simulations at 1 km Resolution. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002192. [Google Scholar] [CrossRef]
- Lean, H.W.; Theeuwes, N.E.; Baldauf, M.; Barkmeijer, J.; Bessardon, G.; Blunn, L.; Bojarova, J.; Boutle, I.A.; Clark, P.A.; Demuzere, M.; et al. The hectometric modelling challenge: Gaps in the current state of the art and ways forward towards the implementation of 100-m scale weather and climate models. Q. J. R. Meteorol. Soc. 2023, 149, 3007–3022. [Google Scholar] [CrossRef]
- Yano, J.I.; Ziemiański, M.Z.; Cullen, M.; Termonia, P.; Onvlee, J.; Bengtsson, L.; Carrassi, A.; Davy, R.; Deluca, A.; Gray, S.L.; et al. Scientific Challenges of Convective-Scale Numerical Weather Prediction. Bull. Am. Meteorol. Soc. 2018, 99, 699–710. [Google Scholar] [CrossRef]
- Simmons, A.J.; Temperton, C. Stability of a Two-Time-Level Semi-Implicit Integration Scheme for Gravity Wave Motion. Mon. Weather Rev. 1997, 125, 600–615. [Google Scholar] [CrossRef]
- Bénard, P. On the Use of a Wider Class of Linear Systems for the Design of Constant-Coefficients Semi-Implicit Time Schemes in NWP. Mon. Weather Rev. 2004, 132, 1319–1324. [Google Scholar] [CrossRef]
- Smolíková, P.; Vivoda, J. Stability Properties of the Constant Coefficients Semi-Implicit Time Schemes Solving Nonfiltering Approximation of the Fully Compressible Equations. Mon. Weather Rev. 2023, 151, 1797–1819. [Google Scholar] [CrossRef]
- Burgot, T.; Auger, L.; Bénard, P. Stability of Constant and Variable Coefficient Semi-Implicit Schemes for the Fully Elastic System of Euler Equations in the Case of Steep Slopes. Mon. Weather Rev. 2023, 151, 1269–1286. [Google Scholar] [CrossRef]
- Grailet, J.F.; Hogan, R.J.; Ghilain, N.; Fettweis, X.; Grégoire, M. Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR model (v3.14), regional evaluation for Belgium and assessment of surface shortwave spectral fluxes at Uccle observatory. EGUsphere 2024, 2024, 1–33. [Google Scholar] [CrossRef]
- Hogan, R.J.; Bozzo, A. A flexible and efficient radiation scheme for the ECMWF model. J. Adv. Model. Earth Syst. 2018, 10, 1990–2008. [Google Scholar] [CrossRef]
- Shonk, J.K.; Hogan, R.J. Tripleclouds: An efficient method for representing horizontal cloud inhomogeneity in 1D radiation schemes by using three regions at each height. J. Clim. 2008, 21, 2352–2370. [Google Scholar] [CrossRef]
- Schäfer, S.A.K.; Hogan, R.J.; Klinger, C.; Chiu, J.C.; Mayer, B. Representing 3-D cloud radiation effects in two-stream schemes: 1. Longwave considerations and effective cloud edge length. J. Geophys. Res. Atmos. 2016, 121, 8567–8582. [Google Scholar] [CrossRef]
- Hogan, R.J.; Schäfer, S.A.K.; Klinger, C.; Chiu, J.C.; Mayer, B. Representing 3-D cloud radiation effects in two-stream schemes: 2. Matrix formulation and broadband evaluation. J. Geophys. Res. Atmos. 2016, 121, 8583–8599. [Google Scholar] [CrossRef]
- Hogan, R.J.; Fielding, M.D.; Barker, H.W.; Villefranque, N.; Schäfer, S.A.K. Entrapment: An Important Mechanism to Explain the Shortwave 3D Radiative Effect of Clouds. J. Atmos. Sci. 2019, 76, 2123–2141. [Google Scholar] [CrossRef]
- Hogan, R.J.; Matricardi, M. A tool for generating fast k-distribution gas-optics models for weather and climate applications. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003033. [Google Scholar] [CrossRef]
- Ukkonen, P.; Hogan, R.J. Twelve Times Faster yet Accurate: A New State-Of-The-Art in Radiation Schemes via Performance and Spectral Optimization. J. Adv. Model. Earth Syst. 2024, 16, e2023MS003932. [Google Scholar] [CrossRef]
- O’Hirok, W.; Gautier, C. The impact of model resolution on differences between independent column approximation and Monte Carlo estimates of shortwave surface irradiance and atmospheric heating rate. J. Atmos. Sci. 2005, 62, 2939–2951. [Google Scholar] [CrossRef]
- Vié, B.; Pinty, J.P.; Berthet, S.; Leriche, M. LIMA (v1.0): A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei. Geosci. Model Dev. 2016, 9, 567–586. [Google Scholar] [CrossRef]
- Lancz, D.; Szintai, S.B.; Honnert, R. Modification of a Parametrization of Shallow Convection in the Grey Zone Using a Mesoscale Model. Bound. Layer Meteorol. 2018, 169, 483–503. [Google Scholar] [CrossRef]
- Honnert, R.; Masson, V.; Couvreux, F. A Diagnostic for Evaluating the Representation of Turbulence in Atmospheric Models at the Kilometric Scale. J. Atmos. Sci. 2011, 68, 3112–3131. [Google Scholar] [CrossRef]
- Savazzi, A.C.M.; Nuijens, L.; de Rooy, W.; Janssens, M.; Siebesma, A.P. Momentum Transport in Organized Shallow Cumulus Convection. J. Atmos. Sci. 2024, 81, 279–296. [Google Scholar] [CrossRef]
- Khain, P.; Levi, Y.; Muskatel, H.; Shtivelman, A.; Vadislavsky, E.; Stav, N. Effect of shallow convection parametrization on cloud resolving NWP forecasts over the Eastern Mediterranean. Atmos. Res. 2021, 247, 1–11. [Google Scholar] [CrossRef]
- Tsiringakis, A.; Frogner, I.; de Rooy, W.; Andrae, U.; Hally, A.; Osorio, S.C.; van der Veen, S.; Barkmeijer, J. An Update to the Stochastically Perturbed Parametrizations Scheme of HarmonEPS. MWR, 2024; accepted for publication. [Google Scholar]
- Boone, A.; Samuelsson, P.; Gollvik, S.; Napoly, A.; Jarlan, L.; Brun, E.; Decharme, B. The interactions between soil-biosphere-atmosphere (isba) land surface model multi-energy balance (meb) option in surfex—Part 1: Model description. Geosci. Model Dev. 2017, 10, 843–872. [Google Scholar] [CrossRef]
- Napoly, A.; Boone, A.; Samuelsson, P.; Gollvik, S.; Martin, E.; Seferian, R.; Carrer, D.; Decharme, B.; Jarlan, L. The interactions between soil–biosphere–atmosphere (ISBA) land surface model multi-energy balance (MEB) option in SURFEXv8 – Part 2: Introduction of a litter formulation and model evaluation for local-scale forest sites. Geosci. Model Dev. 2017, 10, 1621–1644. [Google Scholar] [CrossRef]
- Harman, I.N.; Finnigan, J.J. A simple unified theory for flow in the canopy and roughness sublayer. Bound. Layer Meteorol. 2007, 123, 339–363. [Google Scholar] [CrossRef]
- Harman, I.N.; Finnigan, J.J. Scalar concentration profiles in the canopy and roughness sublayer. Bound. Layer Meteorol. 2008, 129, 323–351. [Google Scholar] [CrossRef]
- Shapkalijevski, M.M.; Viana Jiménez, S.; Boone, A.; Rodier, Q.; Le Moigne, P.; Samuelsson, P. Introducing a roughness-sublayer in the vegetation-atmosphere coupling of HARMONIE-AROME. ACCORD Newsl. 2022, 2, 82–90. [Google Scholar]
- Bessardon, G.; Rieutord, T.; Gleeson, E.; Oswald, S.; Palmason, B. High-Resolution Land Use Land Cover Dataset for Meteorological Modelling – Part 1: ECOCLIMAP-SG+ an Agreement-Based Dataset. Preprints 2024. [Google Scholar] [CrossRef]
- Rieutord, T.; Bessardon, G.; Gleeson, E. High-Resolution Land Use Land Cover Dataset for Meteorological Modelling—Part 2: ECOCLIMAP-SG-ML an Ensemble Land Cover Map. Preprints 2024. [Google Scholar] [CrossRef]
- Walsh, E.; Bessardon, G.; Gleeson, E.; Ulmas, P. Using machine learning to produce a very high resolution land-cover map for Ireland. Adv. Sci. Res. 2021, 18, 65–87. [Google Scholar] [CrossRef]
- Keany, E.; Bessardon, G.; Gleeson, E. Using machine learning to produce a cost-effective national building height map of Ireland to categorise local climate zones. Adv. Sci. Res. 2022, 19, 13–27. [Google Scholar] [CrossRef]
- Bozzo, A.; Remy, S.; Benedetti, A.; Flemming, J.; Bechtold, P.; Rodwell, M.; Morcrette, J.J. Implementation of a CAMS-based aerosol climatology in the IFS. ECWMF 2017. [Google Scholar] [CrossRef]
- Rémy, S.; Kipling, Z.; Huijnen, V.; Flemming, J.; Nabat, P.; Michou, M.; Ades, M.; Engelen, R.; Peuch, V.H. Description and evaluation of the tropospheric aerosol scheme in the Integrated Forecasting System (IFS-AER, cycle 47R1) of ECMWF. Geosci. Model Dev. 2022, 15, 4881–4912. [Google Scholar] [CrossRef]
LW Band (cm−1) | |||||||
---|---|---|---|---|---|---|---|
1 (10–350) | −1.496 | 1.495 | |||||
2 (350–500) | −1.879 | 3.198 | |||||
3 (500–630) | |||||||
4 (630–700) | −2.564 | 4.461 | |||||
5 (700–820) | 1.214 | −1.617 | |||||
6 (820–980) | −2.333 | 2.869 | |||||
7 (980–1080) | |||||||
8 (1080–1180) | |||||||
9 (1180–1390) | |||||||
10 (1390–1480) | |||||||
11 (1480–1800) | −2.580 | 3.197 | |||||
12 (1800–r2080) | 1.515 | −2.572 | 1.520 | ||||
13 (2080–2250) | 1.575 | −1.810 | |||||
14 (2250–2380) | 1.882 | −3.059 | |||||
15 (2380–2600) | 2.461 | ||||||
16 (2600–3250) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gleeson, E.; Kurzeneva, E.; de Rooy, W.; Rontu, L.; Martín Pérez, D.; Clancy, C.; Ivarsson, K.-I.; Engdahl, B.J.; Tijm, S.; Nielsen, K.P.; et al. The Cycle 46 Configuration of the HARMONIE-AROME Forecast Model. Meteorology 2024, 3, 354-390. https://doi.org/10.3390/meteorology3040018
Gleeson E, Kurzeneva E, de Rooy W, Rontu L, Martín Pérez D, Clancy C, Ivarsson K-I, Engdahl BJ, Tijm S, Nielsen KP, et al. The Cycle 46 Configuration of the HARMONIE-AROME Forecast Model. Meteorology. 2024; 3(4):354-390. https://doi.org/10.3390/meteorology3040018
Chicago/Turabian StyleGleeson, Emily, Ekaterina Kurzeneva, Wim de Rooy, Laura Rontu, Daniel Martín Pérez, Colm Clancy, Karl-Ivar Ivarsson, Bjørg Jenny Engdahl, Sander Tijm, Kristian Pagh Nielsen, and et al. 2024. "The Cycle 46 Configuration of the HARMONIE-AROME Forecast Model" Meteorology 3, no. 4: 354-390. https://doi.org/10.3390/meteorology3040018
APA StyleGleeson, E., Kurzeneva, E., de Rooy, W., Rontu, L., Martín Pérez, D., Clancy, C., Ivarsson, K. -I., Engdahl, B. J., Tijm, S., Nielsen, K. P., Shapkalijevski, M., Maalampi, P., Ukkonen, P., Batrak, Y., Kähnert, M., Kettler, T., van den Brekel, S. M. E., Adriaens, M. R., Theeuwes, N., ... Stappers, R. (2024). The Cycle 46 Configuration of the HARMONIE-AROME Forecast Model. Meteorology, 3(4), 354-390. https://doi.org/10.3390/meteorology3040018