Changes in Climatological Variables at Stations around Lake Erie and Lake Michigan
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. Statistical Methods
3. Results from Statistical Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jabbari, A.; Ackerman, J.D.; Boegman, L.; Zhao, Y. Increases in Great Lake winds and extreme events facilitate interbasin coupling and reduce water quality in Lake Erie. Sci. Rep. 2021, 11, 5733. [Google Scholar] [CrossRef] [PubMed]
- Ehsanzadeh, E.; Saley, H.M.; Ouarda, T.B.J.; Burn, D.H.; Pietroniro, A.; Seidou, O.; Charron, C.; Lee, D. Analysis of changes in the Great Lakes hydro-climatic variables. J. Great Lakes Res. 2013, 39, 383–394. [Google Scholar] [CrossRef]
- Croley, T.E. Great Lakes Climate Change Hydrologic Impact Assessment: I.J.C. Lake Ontario-St. Lawrence River Regulation Study. NOAA Technical Memorandum GLERL–126. 2003. Available online: https://repository.library.noaa.gov/view/noaa/11038 (accessed on 2 July 2024).
- Lofgren, B.M. Global warming effects on great lakes water: More precipitation but less water? In Proceedings of the 18th Conference on Hydrology, 8th Annual Meeting of the American Meteorological Society, Seattle, WA, USA, 11–15 January 2004. [Google Scholar]
- Yee, P.; Cuthbert, D.; Moulton, R. The 1987–1989 drop in Great Lakes water levels, causes and effects. In International and Transboundary Water Resources Issues; FitzGibbon, J.E., Ed.; American Water Resources Association: Bethesda, MD, USA, 1990; pp. 191–201. [Google Scholar]
- Mortsch, L.; Hengeveld, H.; Lister, M.; Wenger, L.; Lofgren, B.; Quinn, F.; Slivitzky, M. Climate change impacts on the hydrology of the great lakes-St. Lawrence System. Can. Water Res. J. 2000, 25, 153–179. [Google Scholar] [CrossRef]
- McBean, E.; Motiee, H. Assessment of impact of climate change on water resources: A long term analysis of the Great Lakes of North America. Hydrol. Earth Syst. Sci. 2008, 12, 239–255. [Google Scholar] [CrossRef]
- Briley, L.J.; Rood, R.B.; Notaro, M. Large lakes in climate models: A great lakes case study on the usability of CMIP5. J. Great Lakes Res. 2021, 47, 405–418. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 773. [Google Scholar] [CrossRef]
- Van Cleave, K.; Lenters, J.D.; Wang, J.; Verhamme, E.M. A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niño winter of 1997–1998. Limnol. Oceanogr. 2014, 59, 1889–1898. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Hein-Griggs, D.; Janes, T.; Tucker, S.; Ciborowski, J.J.H. Climate change projections of temperature and precipitation for the great lakes basin using the PRECIS regional climate model. J. Great Lakes Res. 2020, 46, 255–266. [Google Scholar] [CrossRef]
- Hayhoe, K.; VanDorn, J.; Creoley, T., II; Schlegal, N.; Wuebbles, D. Regional climate change projections for Chicago and the US Great Lakes. J. Great Lakes Res. 2010, 36, 7–21. [Google Scholar] [CrossRef]
- Gula, J.; Peltier, W.R. Dynamical Downscaling over the Great Lakes basin of north America using the WRF regional climate model: The impact of the Great Lakes system on regional greenhouse warming. J. Clim. 2012, 25, 7723–7742. [Google Scholar] [CrossRef]
- d’Orgeville, M.; Peltier, W.R.; Erler, A.R.; Gula, J. Climate change impacts on Great Lakes Basin precipitation extremes. J. Geophy. Res Atmos. 2014, 119, 799–812. [Google Scholar] [CrossRef]
- Hartmann, H. Neural network based seasonal predictions of lake-effect snowfall. Atmosphere-Ocean 2012, 50, 31–41. [Google Scholar] [CrossRef]
- Bird, L.J.; Bodekar, G.E.; Clem, K.R. Sensitivity of extreme precipitation to climate change inferred using artificial intelligence shows high spatial variability. Nat. Comm. Earth Environ. 2023, 4, 469. [Google Scholar] [CrossRef]
- Csörgő, M.; Horváth, L. Limit Theorems in Change-Point Analysis; John Wiley: New York, NY, USA, 1997. [Google Scholar]
- Jandhyala, V.K.; Fotopoulos, S.B.; MacNeill, I.B.; Liu, P. Inference for single and multiple change-points in time series. J. Time Ser. Anal. 2013, 34, 423–446. [Google Scholar] [CrossRef]
- Cho, H.; Fryzlewicz, P. Multiple-change-point detection for high dimensional time series via sparsified binary segmentation. J. Roy. Statist. Soc. B 2015, 77, 475–507. [Google Scholar] [CrossRef]
- Jackson, B.; Sargle, J.D.; Barnes, D.; Arabhi, S.; Alt, A.; Gioumousis, P.; Gwin, E.; Sangtrakulcharoen, P.; Tan, L.; Tsai, T.T. An algorithm for optimal partitioning of data on interval. IEEE Signal Process. Lett. 2005, 12, 105–108. [Google Scholar] [CrossRef]
- Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal detection of changepoints with a linear computational cost. J. Amer. Stat. Assoc. 2012, 107, 1590–1598. [Google Scholar] [CrossRef]
- Killick, R.; Eckley, I.; Haynes, K. Change point: An R Package for change point analysis. R Package Version 1.1.5. 2014. Available online: https://CRAN.R-project.org/package=changepoint (accessed on 18 October 2018).
- Bai, J.; Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econom. 2003, 18, 1–22. [Google Scholar] [CrossRef]
- Li, Y.; Lund, R. Multiple changepoint detection using metadata. J. Clim. 2015, 28, 4199–4216. [Google Scholar] [CrossRef]
- Davis, R.; Lee, T.C.M.; Rodriguez-Yam, G.A. Structural estimation for non-stationary time series models. J. Am. Statist. Assoc. 2006, 101, 223–239. [Google Scholar] [CrossRef]
- Li, Y.; Lund, R. Multiple change-point detection via genetic algorithm. J. Clim. 2012, 25, 674–686. [Google Scholar] [CrossRef]
- Shi, X.; Wu, Y.; Rao, C.R. Consistent and powerful non-Euclidean graph-based change-point test with applications to segmenting random interfered video data. Proc. Nat. Acad. Sci. USA 2018, 115, 5914–5919. [Google Scholar] [CrossRef] [PubMed]
- Fremdt, S.; Horváth, L.; Kokoszka, P.; Steinebach. Functional data analysis with increasing number of projections. J. Mult. Anal. 2014, 124, 313–332. [Google Scholar] [CrossRef]
- Jiao, S.; Chan, N.H.; Yau, C.Y. Enhanced Change-Point Detection in Functional Means. arXiv 2022, arXiv:2205.04299. [Google Scholar]
- Cheung, C.Y.; Aue, A.; Hwang, S.; Lee, T.C.M. Simultaneous detection of multiple change points and community structures in time series of networks. IEEE Trans. Signal Infor. Proc. Over Netw. 2020, 6, 580–591. [Google Scholar] [CrossRef]
- Aue, A.; Van Delft, A. Testing for stationarity of functional time series in the frequency domain. Ann. Statist. 2020, 48, 2505–2547. [Google Scholar] [CrossRef]
- Kaul, A.; Fotopoulos, S.B.; Jandhyala, V.K.; Safikhani, A. Inferfence on the change point under a high dimensional sparse mean shift. Electron. J. Stat. 2021, 15, 71–134. [Google Scholar] [CrossRef]
- Gösmann, J.; Stoehr, C.; Heiny, J.; Dette, H. Sequential change point detection in high dimensional time series. Electron. J. Stat. 2022, 16, 3608–3671. [Google Scholar] [CrossRef]
- Fotopoulos, S.B.; Paparas, A.; Jandhyala, V.K. Change point detection and estimation methods under gamma series of observations. Stat. Pap. 2022, 63, 723–754. [Google Scholar] [CrossRef]
- Paparas, A.; Fotopoulos, S.B.; Jandhyala, V.K.; Paparas, D. Maximum likelihood estimation of a change point for Poisson distributed data. Model Assist. Stat. Appl. 2023, 18, 347–358. [Google Scholar] [CrossRef]
- Jandhyala, V.K.; Fotopoulos, S.B. Capturing the distributional behavior of the maximum likelihood estimator of a change-point. Biometrika 1999, 86, 129–140. [Google Scholar] [CrossRef]
- Fotopoulos, S.B.; Jandhyala, V.K.; Khapalova, E. Exact asymptotic distribution of the change-point mle for change in the mean of Gaussian sequences. Ann. Appl. Stat. 2010, 4, 1081–1104. [Google Scholar] [CrossRef]
- Beaulieu, C.; Chen, J.; Sarmiento, J.L. Change-point analysis as a tool to detect abrupt climate variations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 1228–1249. [Google Scholar] [CrossRef]
- Reeves, J.; Chen, J.; Wang, X.L.; Lund, R.; Lu, Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Met. Clim. 2007, 46, 900–915. [Google Scholar] [CrossRef]
- Lund, R.; Beaulieu, C.; Killick, R.; Lu, Q.; Shi, X. Good practices and common pitfalls in climate series changepoint techniques: A review. J. Clim. 2023, 36, 8041–8057. [Google Scholar] [CrossRef]
- Pitman, A.J.; Stouffer, R.J. Abrupt change in climate and climate models. Hydrol. Earth Syst. Sci. 2006, 10, 903–912. [Google Scholar] [CrossRef]
- Lund, R.; Shi, X. Changepoint methods in climatology. Chance 2023, 36, 4–8. [Google Scholar] [CrossRef]
- Fischer, A.M.; Liniger, M.A.; Appenzeller, C. Climate Scenarios of Seasonal Means: Extensions in Time and Space; CH2011 Extension Series 2; National Center for Climate Services (NCCS): Zurich, Switzerland, 2015. [Google Scholar]
- Zerouali, B.; Chettih, M.; Abda, Z.; Mesbah, M. Future hydroclimatic variability projections using combined statistical downscaling approach and rainfall-runoff model: Case of Sebaou River Basin (Northern Algeria). In Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems; Springer International Publishing: Cham, Switzerland, 2023; pp. 297–326. [Google Scholar]
- Lai, Y.; Dzombak, D.A. Use of historical data to assess regional climate change. J. Clim. 2019, 32, 4299–4320. [Google Scholar] [CrossRef]
- Isaac, V.; van Wijngaarden, W.A. Surface water vapor pressure and temperature trends in North America during 1948–2010. J. Clim. 2012, 25, 3599–3609. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the Second International Symposium on Information Theory; Petrov, B.N., Caski, F., Eds.; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Weubbles, D.; Cardinale, B.; Cherkauer, K.; Davidson-Arnott, R.; Hellmann, J.; Infante, D.; Johnson, L.; de Loe, R.; Lofgren, B.; Packman, A.; et al. An Assessment of the Impacts of Climate Change on the Great Lakes; Environmental Law and Policy Center: Chicago, IL, USA, 2019; pp. 1–70. [Google Scholar]
- Wuebbles, D.; Angel, J.; Petersen, K.; Lemke, A.M. (Eds.) An Assessment of the Impacts of Climate Change in Illinois; The Nature Conservancy: Chicago, IL, USA, 2021. [Google Scholar] [CrossRef]
- Xue, P.; Ye, X.; Pal, J.S.; Chu, P.Y.; Kayastha, M.B.; Huang, C. Climate projections over the Great Lakes region: Using two-way coupling of a regional climate model with a 3-D lake model. Geosci. Model Dev. 2022, 15, 4425–4446. [Google Scholar] [CrossRef]
Location | Geographic Region | Years of Data | % Missing |
---|---|---|---|
Buffalo | Lake Erie | 1939–2022 | 0.27 |
Erie | Lake Erie | 1939–2022 | 1 |
Cleveland | Lake Erie | 1939–2022 | 0 |
Chicago | Lake Michigan | 1942–2022 | 1.5 |
Milwaukee | Lake Michigan | 1939–2022 | 0.66 |
Green Bay | Lake Michigan | 1892–2022 | 0 |
Climatic Variable | PRCP1 | p-Value | SNOW1 | p-Value | TMAX32 | p-Value | TMAX90 | p-Value | |
---|---|---|---|---|---|---|---|---|---|
City | |||||||||
Buffalo | 1975 ± 9 [2.36] | 0.02 * | 1979 | 0.56 | 1985 ± 7 [−7.96] | 0.01 * | 1964 ± 4 [−3.42] | 0.00 * | |
Erie | 1969 | 0.76 | 1966 ± 8 [5.46] | 0.01 * | 1985 ± 6 [−8.98] | 0.00 * | 1965 ± 4 [−2.90] 1990 ± 4 [2.70] | 0.00 * 0.00 * | |
Cleveland | 1982 ± 9 [2.30] | 0.04 * | 1971 | 0.26 | 1985 ± 8 [−6.96] | 0.01 * | 1964 ± 2 [−8.34] | 0.00 * | |
Chicago | 1981 | 0.16 | 1966 1991 | 0.27 0.78 | 1985 ± 7 [−7.49] | 0.01 * | 1966 1994 | 0.25 0.79 | |
Milwaukee | 1975 | 0.07 | 1969 | 0.40 | 1985 ± 4 [−11.93] | 0.00 * | 1964 1991 | 0.32 0.91 | |
Green Bay | 1977 | 0.18 | 1970 1996 | 0.11 0.37 | 1986 ± 6 [−11.21] | 0.00 * | 1966 1991 | 0.65 0.20 |
Climatic Variable | PRCP | p-Value | SNOW | p-Value | |
---|---|---|---|---|---|
City | |||||
Buffalo | 1974 ± 10 [128.61] | 0.02 * | 1969 | 0.36 | |
Erie | 1971 ± 11 [134.45] | 0.00 * | 1963 ± 7 [773.31] | 0.02 * | |
Cleveland | 1971 ± 9 [141.76] | 0.00 * | 1971 ± 15 [317.38] | 0.00 * | |
Chicago | 1971 ± 7 [142.98] | 0.00 * | 1966 1991 | 0.81 0.90 | |
Milwaukee | 1971 ± 8 [153.81] | 0.00 * | 1970 ± 12 [221.21] 1995 ± 8 [−103.04] | 0.00 * 0.00 * | |
Green Bay | 1991 ± 11 [96.59] | 0.00 * | 1970 ± 3 [310.59] 1995 ± 14 [76.51] | 0.00 * 0.00 * |
Climatic Variable | TAVG | p-Value | TMAX | p-Value | TMIN | p-Value | |
---|---|---|---|---|---|---|---|
City | |||||||
Buffalo | 1989 ± 8 [0.74] | 0.02 * | 1986 | 0.20 | 1989 ± 6 [0.96] | 0.00 * | |
Erie | 1985 ± 6 [1.06] | 0.00 * | 1985 ± 7 [0.94] | 0.01 * | 1985 ± 5 [1.18] | 0.00 * | |
Cleveland | 1989 ± 8 [0.77] | 0.04 * | 1989 | 0.40 | 1989 ± 5 [1.11] | 0.00 * | |
Chicago | 1985 ± 7 [0.96] | 0.01 * | 1985 | 0.20 | 1985 ± 4 [1.33] | 0.00 * | |
Milwaukee | 1986 ± 3 [1.32] | 0.00 * | 1986 ± 7 [0.98] | 0.01 * | 1985 ± 2 [1.66] | 0.00 * | |
Green Bay | 1986 ± 9 [0.88] | 0.02 * | 1986 ± 9 [0.84] | 0.01 * | 1989 ± 10 [0.93] | 0.04 * |
Lake City | Lake Erie | Lake Michigan | |||||
---|---|---|---|---|---|---|---|
Precip | Buffalo | Erie | Cleveland | Chicago | Milwaukee | Green Bay | |
PRCP1 (#) | 1975 * | 1969 | 1982 * | 1981 | 1975 | 1977 | |
PRCP (mm) | 1974 * | 1971 * | 1971 * | 1971 * | 1971 * | 1991 * |
Lake City | Lake Erie | Lake Michigan | |||||
---|---|---|---|---|---|---|---|
Snow | Buffalo | Erie | Cleveland | Chicago | Milwaukee | Green Bay | |
SNOW1 (#) | 1979 | 1966 * | 1971 | 1966 1991 | 1969 | 1970 1996 | |
SNOW (mm) | 1969 | 1963 * | 1971 * | 1966 1991 | 1970 * 1995 * | 1970 * 1995 * |
Lake City | Lake Erie | Lake Michigan | |||||
---|---|---|---|---|---|---|---|
Temp. | Buffalo | Erie | Cleveland | Chicago | Milwaukee | Green Bay | |
TMAX32 (#) | 1985 * | 1985 * | 1985 * | 1985 * | 1985 * | 1986 * | |
TMAX90 (#) | 1964 * | 1965 * 1990 * | 1964 * | 1966 1994 | 1964 1991 | 1966 1991 | |
TAVG (°C) | 1989 * | 1985 * | 1989 * | 1985 * | 1986 * | 1986 * | |
TMAX (°C) | 1986 | 1985 * | 1989 | 1985 | 1986 * | 1986 * | |
TMIN (°C) | 1989 * | 1985 * | 1989 * | 1985 * | 1985 * | 1989 * |
AIC Numbers for Change-Point Model | |||||||||
---|---|---|---|---|---|---|---|---|---|
Station | PRCP1 | SNOW1 | TMAX32 | TMAX90 | PRCP | SNOW | TAVG | TMAX | TMIN |
Buffalo | 375.01 | 549.94 | 663.10 | 481.09 | 1060.49 | 1293.99 | 190.60 | 200.87 | 195.07 |
Cleveland | 398.00 | 501.24 | 656.72 | 606.06 | 1098.47 | 1213.51 | 205.32 | 221.61 | 205.12 |
Erie | 433.63 | 584.48 | 669.48 | 454.37 | 1104.22 | 1351.99 | 212.88 | 217.56 | 223.54 |
Milwaukee | 400.17 | 510.57 | 671.08 | 561.16 | 1077.86 | 1261.25 | 209.04 | 218.47 | 213.87 |
Chicago | 406.38 | 460.89 | 634.63 | 621.49 | 1063.15 | 1191.81 | 195.04 | 206.16 | 199.98 |
Green Bay | 384.13 | 508.59 | 660.08 | 537.67 | 1046.48 | 1240.95 | 218.38 | 213.31 | 245.36 |
AIC Numbers for Simple Linear Model | |||||||||
Buffalo | 386.16 | 551.85 | 669.53 | 488.71 | 1065.51 | 1298.75 | 194.19 | 204.92 | 193.64 |
Cleveland | 399.03 | 503.08 | 659.92 | 616.55 | 1096.41 | 1223.94 | 212.85 | 224.77 | 213.38 |
Erie | 436.15 | 584.38 | 675.10 | 460.18 | 1107.72 | 1352.96 | 225.44 | 224.75 | 240.65 |
Milwaukee | 402.48 | 509.29 | 678.79 | 560.06 | 1080.82 | 1271.57 | 223.06 | 228.38 | 228.30 |
Chicago | 406.37 | 462.50 | 638.32 | 620.86 | 1058.65 | 1197.62 | 201.84 | 208.94 | 207.53 |
Green Bay | 386.64 | 509.58 | 669.73 | 538.58 | 1038.73 | 1253.98 | 226.73 | 223.00 | 251.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaul, A.; Paparas, A.; Jandhyala, V.K.; Fotopoulos, S.B. Changes in Climatological Variables at Stations around Lake Erie and Lake Michigan. Meteorology 2024, 3, 333-353. https://doi.org/10.3390/meteorology3040017
Kaul A, Paparas A, Jandhyala VK, Fotopoulos SB. Changes in Climatological Variables at Stations around Lake Erie and Lake Michigan. Meteorology. 2024; 3(4):333-353. https://doi.org/10.3390/meteorology3040017
Chicago/Turabian StyleKaul, Abhishek, Alex Paparas, Venkata K. Jandhyala, and Stergios B. Fotopoulos. 2024. "Changes in Climatological Variables at Stations around Lake Erie and Lake Michigan" Meteorology 3, no. 4: 333-353. https://doi.org/10.3390/meteorology3040017
APA StyleKaul, A., Paparas, A., Jandhyala, V. K., & Fotopoulos, S. B. (2024). Changes in Climatological Variables at Stations around Lake Erie and Lake Michigan. Meteorology, 3(4), 333-353. https://doi.org/10.3390/meteorology3040017