Next Issue
Volume 2, December
Previous Issue
Volume 2, June
 
 

Chips, Volume 2, Issue 3 (September 2023) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 3163 KiB  
Technical Note
Silicon Carbide: Physics, Manufacturing, and Its Role in Large-Scale Vehicle Electrification
by Filippo Di Giovanni
Chips 2023, 2(3), 209-222; https://doi.org/10.3390/chips2030013 - 13 Sep 2023
Cited by 1 | Viewed by 4417
Abstract
Silicon carbide is changing power electronics; it is enabling massive car electrification owing to its far more efficient operation with respect to mainstream silicon in a large variety of energy conversion systems like the main traction inverter of an electric vehicle (EV). Its [...] Read more.
Silicon carbide is changing power electronics; it is enabling massive car electrification owing to its far more efficient operation with respect to mainstream silicon in a large variety of energy conversion systems like the main traction inverter of an electric vehicle (EV). Its superior performance depends upon unique properties such as lower switching and conduction losses, safer high-temperature operation and high-voltage capability. Starting briefly with a description of its physics, more detailed information is then given about some key manufacturing steps such as crystal growth and epitaxy. Afterwards, an overview of its inherent defects and how to mitigate them is presented. Finally, a typical EV’s propulsion inverter is shown, proving the technology’s effectiveness in meeting requirements for mass electrification. Foreword: In recent years, SiC has drawn the attention of a growing number of power electronics designers as the material has good prospects for reducing environmental impacts on a global basis. The goal of this paper, based on the author’s contribution to the introduction of the technology at STMicroelectronics, is to show the potential of silicon carbide in enabling massive car electrification. The company’s SiC MOSFETs, tailored to the automotive industry, are enabling visionary EV makers to pave the way for sustainable e-mobility. The intent of this paper is to describe, for a large crowd of readers, how SiC features can accelerate such a transition by quantifying the benefits they bring in terms of improved efficiency in an EV electric powertrain. The paper also has the ambition to highlight the material’s physics and to give an overview of its production processes, starting from the crystal growth for realizing substrates to the main epitaxy techniques. Some space has been devoted to the analysis of the main crystal defects not present in silicon and whose nature poses new challenges in terms of manufacturing yields and screening. Finally, some insights into the market evolution and on the transition to 200 mm wafers are given. Full article
Show Figures

Figure 1

14 pages, 461 KiB  
Article
Synergistic Verification of Hardware Peripherals through Virtual Prototype Aided Cross-Level Methodology Leveraging Coverage-Guided Fuzzing and Co-Simulation
by Sallar Ahmadi-Pour, Mathis Logemann, Vladimir Herdt and Rolf Drechsler
Chips 2023, 2(3), 195-208; https://doi.org/10.3390/chips2030012 - 8 Sep 2023
Viewed by 1645
Abstract
In this paper, we propose a Virtual Prototype (VP) driven verification methodology for Hardware (HW) peripherals. In particular, we combine two approaches that complement each other and use the VP as a readily available reference model: We use (A) Coverage-Guided Fuzzing (CGF) which [...] Read more.
In this paper, we propose a Virtual Prototype (VP) driven verification methodology for Hardware (HW) peripherals. In particular, we combine two approaches that complement each other and use the VP as a readily available reference model: We use (A) Coverage-Guided Fuzzing (CGF) which enables comprehensive verification at the unit-level of the Register-Transfer Level (RTL) HW peripheral with a Transaction Level Modeling (TLM) reference, and (B) an application-driven co-simulation-based approach that enables verification of the HW peripheral at the system-level. As a case-study, we utilize a RISC-V Platform Level Interrupt Controller (PLIC) as HW peripheral and use an abstract TLM PLIC implementation from the open source RISC-V VP as the reference model. In our experiments we find three behavioral mismatches and discuss the observation of these, as well as non-functional timing behavior mismatches, that were found through the proposed synergistic approach. Furthermore, we provide a discussion and considerations on the RTL/TLM Transactors, as they embody one keystone in cross-level methods. As the different approaches uncover different mismatches in our case-study (e.g., behavioral mismatches and timing mismatches), we conclude a synergy between the methods to aid in verification efforts. Full article
Show Figures

Figure 1

22 pages, 2528 KiB  
Article
Standard-Cell-Based Comparators for Ultra-Low Voltage Applications: Analysis and Comparisons
by Riccardo Della Sala, Francesco Centurelli, Giuseppe Scotti and Gaetano Palumbo
Chips 2023, 2(3), 173-194; https://doi.org/10.3390/chips2030011 - 18 Aug 2023
Cited by 3 | Viewed by 1856
Abstract
This work is focused on the performance of three different standard-cell-based comparator topologies, considering ultra-low-voltage (ULV) operation. The main application scenarios in which standard-cell-based comparators can be exploited are considered, and a set of figures of merit (FoM) to allow an in-depth comparison [...] Read more.
This work is focused on the performance of three different standard-cell-based comparator topologies, considering ultra-low-voltage (ULV) operation. The main application scenarios in which standard-cell-based comparators can be exploited are considered, and a set of figures of merit (FoM) to allow an in-depth comparison among the different topologies is introduced. Then, a set of simulation testbenches are defined in order to simulate and compare the considered topologies implemented in both a 130 nm technology and a 28 nm FDSOI CMOS process. Propagation delay, power consumption and power–delay product are evaluated for different values of the input common mode voltage, as a function of input differential amplitude, and in different supply voltage and temperature conditions. Monte Carlo simulations to evaluate the input offset voltage under mismatch variations are also provided. Simulation results show that the performances of the different comparator topologies are strongly dependent on the input common mode voltage, and that the best values for all the performance figures of merit are achieved by the comparator based on three-input NAND gates, with the only limitation being its non-rail-to-rail input common mode range (ICMR). The performances of the considered comparator topologies have also been simulated for different values of the supply voltage, ranging from 0.3 V to 1.2 V, showing that, even if standard-cell-based comparators can be operated at higher supply voltages by scaling their performances accordingly, the best values of the FoMs are achieved for VDD = 0.3 V. Full article
Show Figures

Figure 1

14 pages, 3459 KiB  
Article
A-DSCNN: Depthwise Separable Convolutional Neural Network Inference Chip Design Using an Approximate Multiplier
by Jin-Jia Shang, Nicholas Phipps, I-Chyn Wey and Tee Hui Teo
Chips 2023, 2(3), 159-172; https://doi.org/10.3390/chips2030010 - 19 Jul 2023
Cited by 3 | Viewed by 2570
Abstract
For Convolutional Neural Networks (CNNs), Depthwise Separable CNN (DSCNN) is the preferred architecture for Application Specific Integrated Circuit (ASIC) implementation on edge devices. It benefits from a multi-mode approximate multiplier proposed in this work. The proposed approximate multiplier uses two 4-bit multiplication operations [...] Read more.
For Convolutional Neural Networks (CNNs), Depthwise Separable CNN (DSCNN) is the preferred architecture for Application Specific Integrated Circuit (ASIC) implementation on edge devices. It benefits from a multi-mode approximate multiplier proposed in this work. The proposed approximate multiplier uses two 4-bit multiplication operations to implement a 12-bit multiplication operation by reusing the same multiplier array. With this approximate multiplier, sequential multiplication operations are pipelined in a modified DSCNN to fully utilize the Processing Element (PE) array in the convolutional layer. Two versions of Approximate-DSCNN (A-DSCNN) accelerators were implemented on TSMC 40 nm CMOS process with a supply voltage of 0.9 V. At a clock frequency of 200 MHz, the designs achieve 4.78 GOPs/mW and 4.89 GOP/mW power efficiency while occupying 1.16 mm2 and 0.398 mm2 area, respectively. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop