NICE: A Web-Based Tool for the Characterization of Transient Noise in Gravitational Wave Detectors
Abstract
:1. Introduction
2. Related Work
- The dataDisplay: software that allows users to read Virgo data from all available channels and visualize various types of plots for detector characterization (e.g., spectrograms or coherence tests) [24];
3. Software Description
3.1. The Tool’s Architecture
3.1.1. Database Infrastructure for Glitches
3.1.2. Glitch Request Page
- GPS-time (all data are stored in the GPS time system, which is the number of seconds from 00:00 of 6 January 1980) interval;
- Central frequency range;
- Minimum and maximum signal-to-noise ratio (SNR) values;
- ETG name(s) that generated the glitch’s metadata;
- Channel name(s), i.e., the LIGO–Virgo–KAGRA strain channels and/or the most interesting auxiliary channels, which are usually called “first-look channels”;
- Class label(s) and/or select glitches that are not classified in the database.
3.1.3. Interactive Plot Window (IPW)
3.1.4. Single Glitch Analysis Window (SGAW)
- Overview: shows the name and the description of the label used to classify the glitch;
- Coincident Channels: allows the origin of a glitch to be investigated and the listing of all glitches whose peaks are time-coincident across the strain channel and the first-look auxiliary channels, providing the name of the ETG that generated that trigger and the details of the glitch given by the ETG itself. Here, the user can download a table with the metadata and compute a Q-scan of the glitch in the strain and auxiliary channels where coincident peaks of energy are present;
- Download: a download button, which allows the user to download 1 min of strain data around the time of a glitch;
- Visualization: as with the second section, data are read and transformed for morphology visualization, which contains the necessary patterns for the classification (see Figure 5 for the example carried out with simulated strain data). Additionally, the time window around the trigger can be set to fit with the glitch duration. A toolbar is present below that makes it possible to save the result, move the time–frequency position, and zoom in on the glitch component.
3.2. The Tool’s Functionalities
4. Description of the Tool’s Operation
5. Impact on Detector Characterization
- Used Percentage Veto (UPV) algorithm, which makes a statistical correlation between transient events in the strain channel and some auxiliary channels [40];
- Omicron itself, which can also perform a time-coincident trigger search between the strain channel and some auxiliary channels (Omicron documentation: https://virgo.docs.ligo.org/virgoapp/Omicron/, accessed on 12 April 2024).
6. Threats to Validity
- Compare plots obtained from VIM and NICE and check if Omicron glitch distribution plots are equal for those metadata updated every 24 h in the GlitchDB;
- Measure the speed with which plots are obtained from SGAW when having access to real data;
- Ensure there is a machine learning pipeline capable of providing glitch labels and uploading them to the database in a few seconds, to be able to use NICE also for the low-latency analysis of the detector status.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NICE | Noise Interactive Catalogue Explorer |
GW | Gravitational Wave |
ETG | Event Trigger Generator |
GlitchDB | Glitch Database |
SNR | Signal-to-Noise Ratio |
IPW | Interactive Plot Window |
SGAW | Single Glitch Analysis Window |
VIM | Virgo Interferometer Monitor |
UPV | Used Percentile Veto |
References
- Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Advanced LIGO. Class. Quantum Grav. 2015, 32, 074001. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quantum Grav. 2015, 32, 024001. [Google Scholar] [CrossRef]
- Aso, Y.; Michimura, Y.; Somiya, K.; Ando, M.; Miyakawa, O.; Sekiguchi, T.; Tatsumi, D.; Yamamoto, H. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D 2013, 88, 043007. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D. GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. arXiv 2022, arXiv:2108.01045. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Addesso, P.; et al. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Class. Quantum Grav. 2016, 33, 134001. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Class. Quantum Gravity 2020, 37, 055002. [Google Scholar] [CrossRef]
- Davis, D.; White, L.V.; Saulson, P.R. Utilizing aLIGO glitch classifications to validate gravitational-wave candidates. Class. Quantum Gravity 2020, 37, 145001. [Google Scholar] [CrossRef]
- Robinet, F. Omicron: An Algorithm to Detect and Characterize Transient Events in Gravitational-Wave Detector; Technical Report, VIR-0545C-14; Virgo TDS: Cascina, PI, Italy, 2018; Available online: https://tds.virgo-gw.eu/ql/?c=10651 (accessed on 12 April 2024).
- Robinet, F.; Arnaud, N.; Leroy, N.; Lundgren, A.; Macleod, D.; McIver, J. Omicron: A tool to characterize transient noise in gravitational-wave detectors. SoftwareX 2020, 12, 100620. [Google Scholar] [CrossRef]
- Brown, J. Calculation of a constant Q spectral transform. J. Acoust. Soc. Am. 1991, 89, 425–434. [Google Scholar] [CrossRef]
- Chatterji, S.K. The Search for Gravitational Wave Bursts in Data from the Second LIGO Science Run. Ph.D. Thesis, Massachusetts Institute of Technology, Department of Physics, Cambridge, MA, USA, 2005. [Google Scholar]
- Chatterji, S.; Blackburn, L.; Martin, G.; Katsavounidis, E. Multiresolution techniques for the detection of gravitational-wave bursts. Class. Quantum Gravity 2004, 21, S1809–S1818. [Google Scholar] [CrossRef]
- Berni, F.; Carbognani, F.; Dattilo, V.; Gherardini, V.; Hemming, G.; Verkindt, D. The Detector Monitoring System; Technical Report, VIR-0191A-12; Virgo TDS: Cascina, PI, Italy, 2012; Available online: https://tds.virgo-gw.eu/ql/?c=9005 (accessed on 12 April 2024).
- Berni, F. DMS Help Manual; Technical Report, VIR-0346A-20; Virgo TDS: Cascina, PI, Italy, 2020; Available online: https://tds.virgo-gw.eu/ql/?c=15469 (accessed on 12 April 2024).
- Acernese, F.; Agathos, M.; Ain, A.; Albanesi, S.; Allocca, A.; Amato, A.; Andrade, T.; Andres, N.; Andrés-Carcasona, M.; Andrić, T.; et al. Virgo detector characterization and data quality: Tools. Class. Quantum Gravity 2023, 40, 185005. [Google Scholar] [CrossRef]
- Verkindt, D. Advanced Virgo+ dataDisplay; Manual, VIR-0047C-21; Virgo TDS: Cascina, PI, Italy, 2021; Available online: https://tds.virgo-gw.eu/ql/?c=16295 (accessed on 12 April 2024).
- Hemming, G.; Verkindt, D. Virgo Interferometer Monitor (VIM) Web User Interface (WUI) User Guide; Manual, VIR-0546A-16; Virgo TDS: Cascina, PI, Italy, 2016; Available online: https://tds.virgo-gw.eu/ql/?c=11869 (accessed on 12 April 2024).
- Verkindt, D. Advanced Virgo: From detector monitoring to gravitational wave alerts. In Proceedings of the 54th Rencontres de Moriond on Gravitation (Moriond Gravitation 2019), La Thuile, Italy, 23–30 March 2019; p. 57. [Google Scholar]
- Davis, D.; Areeda, J.S.; Berger, B.K.; Bruntz, R.; Effler, A.; Essick, R.C.; Fisher, R.P.; Godwin, P.; Goetz, E.; Helmling-Cornell, A.F.; et al. LIGO detector characterization in the second and third observing runs. Class. Quantum Gravity 2021, 38, 135014. [Google Scholar] [CrossRef]
- Davis, D.; Walker, M. Detector Characterization and Mitigation of Noise in Ground-Based Gravitational-Wave Interferometers. Galaxies 2022, 10, 12. [Google Scholar] [CrossRef]
- Urban, A.L.; Macleod, D.; Massinger, T.; Bidler, J.; Smith, J.; Macedo, A.; Soni, S.; Coughlin, S.; Katerinaleman; Davis, D.; et al. Gwdetchar/gwdetchar: 1.0.2. Zenodo 2019. [Google Scholar] [CrossRef]
- Glanzer, J.; Banagiri, S.; Coughlin, S.B.; Soni, S.; Zevin, M.; Berry, C.P.L.; Patane, O.; Bahaadini, S.; Rohani, N.; Crowston, K.; et al. Data quality up to the third observing run of advanced LIGO: Gravity Spy glitch classifications. Class. Quantum Gravity 2023, 40, 065004. [Google Scholar] [CrossRef]
- Hunt, J. PyMySQL module. In Advanced Guide to Python 3 Programming. Undergraduate Topics in Computer Science; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Usman, S.A.; Nitz, A.H.; Harry, I.W.; Biwer, C.M.; Brown, D.A.; Cabero, M.; Capano, C.D.; Canton, T.D.; Dent, T.; Fairhurst, S.; et al. The PyCBC search for gravitational waves from compact binary coalescence. Class. Quantum Gravity 2016, 33, 215004. [Google Scholar] [CrossRef]
- Zevin, M.; Coughlin, S.; Bahaadini, S.; Besler, E.; Rohani, N.; Allen, S.; Cabero, M.; Crowston, K.; Katsaggelos, A.K.; Larson, S.L.; et al. Gravity Spy: Integrating advanced LIGO detector characterization, machine learning, and citizen science. Class. Quantum Gravity 2017, 34, 064003. [Google Scholar] [CrossRef] [PubMed]
- Bahaadini, S.; Noroozi, V.; Rohani, N.; Coughlin, S.; Zevin, M.; Smith, J.; Kalogera, V.; Katsaggelos, A. Machine learning for Gravity Spy: Glitch classification and dataset. Inf. Sci. 2018, 444, 172–186. [Google Scholar] [CrossRef]
- Soni, S.; Austin, C.; Effler, A.; Schofield, R.M.S.; González, G.; Frolov, V.V.; Driggers, J.C.; Pele, A.; Urban, A.L.; Valdes, G.; et al. Reducing scattered light in LIGO’s third observing run. Class. Quantum Gravity 2021, 38, 025016. [Google Scholar] [CrossRef]
- Collins, B.; Van de Ven, B.; Eswaramoorthy, P.; Zimmermann, M.; Avrella, D. Bokeh: Essential Open Source Tools for Science. Zenodo 2020. [Google Scholar] [CrossRef]
- Macleod, D.M.; Areeda, J.S.; Coughlin, S.B.; Massinger, T.J.; Urban, A.L. GWpy: A Python package for gravitational-wave astrophysics. SoftwareX 2021, 13, 100657. [Google Scholar] [CrossRef]
- Razzano, M.; Cuoco, E. Image-based deep learning for classification of noise transients in gravitational wave detectors. Class. Quantum Gravity 2018, 35, 095016. [Google Scholar] [CrossRef]
- Vinet, J.Y.; Brisson, V.; Braccini, S. Scattered light noise in gravitational wave interferometric detectors: Coherent effects. Phys. Rev. D 1996, 54, 1276–1286. [Google Scholar] [CrossRef]
- Isogai, T.; Forthe Ligo Scientific Collaboration and the Virgo Collaboration. Used percentage veto for LIGO and Virgo binary inspiral searches. J. Phys. Conf. Ser. 2010, 243, 012005. [Google Scholar] [CrossRef]
- Smith, J.R.; Abbott, T.; Hirose, E.; Leroy, N.; MacLeod, D.; McIver, J.; Saulson, P.; Shawhan, P. A hierarchical method for vetoing noise transients in gravitational-wave detectors. Class. Quantum Gravity 2011, 28, 235005. [Google Scholar] [CrossRef]
- Fiori, I.; Paoletti, F.; Tringali, M.C.; Janssens, K.; Karathanasis, C.; Menéndez-Vázquez, A.; Romero-Rodríguez, A.; Sugimoto, R.; Washimi, T.; Boschi, V.; et al. The Hunt for Environmental Noise in Virgo during the Third Observing Run. Galaxies 2020, 8, 82. [Google Scholar] [CrossRef]
- Razzano, M.; Di Renzo, F.; Fidecaro, F.; Hemming, G.; Katsanevas, S. GWitchHunters: Machine learning and citizen science to improve the performance of gravitational wave detector. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1048, 167959. [Google Scholar] [CrossRef]
- Cuoco, E.; Powell, J.; Cavaglià, M.; Ackley, K.; Bejger, M.; Chatterjee, C.; Coughlin, M.; Coughlin, S.; Easter, P.; Essick, R.; et al. Enhancing gravitational-wave science with machine learning. Mach. Learn. Sci. Technol. 2020, 2, 011002. [Google Scholar] [CrossRef]
- Accadia, T.; Acernese, F.; Agathos, M.; Astone, P.; Ballardin, G.; Barone, F.; Barsuglia, M.; Basti, A.; Bauer, T.S.; Bebronne, M.; et al. The NoEMi (Noise Frequency Event Miner) framework. J. Phys. Conf. Ser. 2012, 363, 012037. [Google Scholar] [CrossRef]
Name | GWSinGauss | GWScatteredLight |
---|---|---|
SNR | ||
(s) | ||
(Hz) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorrentino, N.; Razzano, M.; Di Renzo, F.; Fidecaro, F.; Hemming, G. NICE: A Web-Based Tool for the Characterization of Transient Noise in Gravitational Wave Detectors. Software 2024, 3, 169-182. https://doi.org/10.3390/software3020008
Sorrentino N, Razzano M, Di Renzo F, Fidecaro F, Hemming G. NICE: A Web-Based Tool for the Characterization of Transient Noise in Gravitational Wave Detectors. Software. 2024; 3(2):169-182. https://doi.org/10.3390/software3020008
Chicago/Turabian StyleSorrentino, Nunziato, Massimiliano Razzano, Francesco Di Renzo, Francesco Fidecaro, and Gary Hemming. 2024. "NICE: A Web-Based Tool for the Characterization of Transient Noise in Gravitational Wave Detectors" Software 3, no. 2: 169-182. https://doi.org/10.3390/software3020008
APA StyleSorrentino, N., Razzano, M., Di Renzo, F., Fidecaro, F., & Hemming, G. (2024). NICE: A Web-Based Tool for the Characterization of Transient Noise in Gravitational Wave Detectors. Software, 3(2), 169-182. https://doi.org/10.3390/software3020008