Defining and Researching “Dynamic Systems of Systems”
Abstract
:1. Introduction
To identify and classify research challenges with respect to dynaSoS from the point of view of the researchers in the context of the project DynaSoS.
- C1
- The main contribution (C1) is a classification scheme for reasoning about dynaSoS and for deriving and structuring research challenges and directions. The scheme comprises two dimensions: scope and characteristics. The scope refers to trends like that toward an increasingly connected world and sketches a vision explaining why these trends make sense. The characteristics enhance and adapt established SoS characteristics in order to include novel aspects and to better align them with the structuring of research into different research areas and research communities.
- C2
- A further contribution (C2) is the presentation of the identified research challenges along with the dynaSoS characteristics and proposals for the research directions.
2. Method
- The interviews worked as a preliminary phase to help us characterize dynaSoS through use cases and example systems.
- The literature review supported the collection of the challenges in dynaSoS.
- Benefiting from the results of the interviews and the literature review, we performed several workshops iteratively to create a classification scheme for dynaSoS and use it to classify the identified research challenges. The internal workshops predominantly created the classification scheme for dynaSoS and clustered the identified challenges, whereas the external workshops helped improve the results by adding to, reviewing, and validating them.
2.1. Interviews
2.2. Literature Review
- Inclusion criteria: Documents containing concrete challenges or research questions concerning SoSs.
- Exclusion criteria: Proceedings, documents not written in English, and primary work that presents solutions and evaluations.
2.3. Workshops
3. A Classification Scheme for DynaSoS
3.1. Scopes of DynaSoS
3.1.1. Small Vertical Atomic DynaSoS
3.1.2. Vertical Hierarchical DynaSoS
3.1.3. Horizontal Hierarchical DynaSoS
3.1.4. Large Holistic DynaSoS
3.2. DynaSoS Characteristics
- Heterogeneous Open Systems (Managerial Independence and Operational Independence).
- Continuously Improved and Innovation-Driven (Evolutionary Development).
- Complex Systems (Emergent Behavior).
- Distributed Systems (Geographic Distribution).
- Data-Intensive Systems.
- AI-based Autonomy of Constituent Systems.
3.2.1. Heterogeneous Open Systems (Managerial Independence and Operational Independence)
3.2.2. Continuously Improved and Innovation-Driven Systems (Evolutionary Development)
3.2.3. Complex Systems (Emergent Behavior)
3.2.4. Distributed Systems (Geographic Distribution)
3.2.5. AI-Based Autonomy
3.2.6. Data-Intensive Systems
4. Research Challenges
4.1. Heterogeneity and Openness
4.2. Continuously Improved and Innovation-Driven
4.3. Complexity
4.4. Distributed Systems
4.5. Data-Intensive Systems
4.6. AI-Based Autonomy
5. Discussion
5.1. Automated Software Engineering for dynaSoS
5.2. Reliable Data Management for dynaSoS
5.3. Engineering of Safe and Highly Trustworthy dynaSoS
5.4. Context-Aware Behavior in dynaSoS
5.5. Value-Based Engineering of dynaSoS
5.6. Engineering of Emergence and Resilience
6. Related Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gröger, J.; Liu, R.; Stobbe, L.; Druschke, J.; Richter, N. Green Cloud Computing: Lebenszyklusbasierte Datenerhebung zu Umweltwirkungen des Cloud Computing. Berlin, Germany. 2021. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2021-06-17_texte_94-2021_green-cloud-computing.pdf (accessed on 1 April 2024).
- Maier, M.W. Architecting principles for systems-of-systems. Syst. Eng. J. Int. Counc. Syst. Eng. 1998, 1, 267–284. [Google Scholar] [CrossRef]
- Gorod, A.; Sauser, B.; Boardman, J. System-of-systems engineering management: A review of modern history and a path forward. IEEE Syst. J. 2008, 2, 484–499. [Google Scholar] [CrossRef]
- DynaSoS. Example Systems. 2022. Available online: https://dynasos.de/tag/example-systems/ (accessed on 3 April 2023).
- Elsevier. Scopus—Document Search. 2023. Available online: https://www.scopus.com (accessed on 3 April 2023).
- Elsevier. Scopus Content. 2024. Available online: https://www.elsevier.com/products/scopus/content (accessed on 1 April 2024).
- European Commission; Directorate-General for Structural Reform Support; Niestroy, I. Managing the Implementation of the SDGs. Technical Report. Brussels, Belgium. 2021. Available online: https://data.europa.eu/doi/10.2887/949364 (accessed on 1 April 2024).
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin III, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 2. [Google Scholar] [CrossRef]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- European Commission. Delivering on the UN’s Sustainable Development Goals—A Comprehensive Approach. Technical Report. Brussels, Belgium. 2020. Available online: https://commission.europa.eu/system/files/2020-11/delivering_on_uns_sustainable_development_goals_staff_working_document_en.pdf (accessed on 1 April 2024).
- Scoones, I.; Leach, M.; Smith, A.; Stagl, S.; Stirling, A.; Thompson, J. Dynamic Systems and the Challenge of Sustainability; Technical Report; STEPS Centre: Brighton, UK, 2007; Available online: https://steps-centre.org/wp-content/uploads/final_steps_dynamics.pdf (accessed on 1 April 2024).
- Siegenfeld, A.F.; Bar-Yam, Y. An introduction to complex systems science and its applications. Complexity 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Parrend, P.; Collet, P. A review on complex system engineering. J. Syst. Sci. Complex. 2020, 33, 1755–1784. [Google Scholar] [CrossRef]
- Saidi, S.; Ziegenbein, D.; Deshmukh, J.V.; Ernst, R. Autonomous systems design: Charting a new discipline. IEEE Des. Test 2021, 39, 8–23. [Google Scholar] [CrossRef]
- ISO/IEC 22989:2022; Information Technology—Artificial Intelligence—Artificial Intelligence Concepts and Terminology. Technical Report. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/74296.html (accessed on 1 April 2024).
- Kagermann, H.; Gaus, N.; Euler, K.; Hauck, J.; Beyerer, J.; Wahlster, W.; Brackemann, H. Fachforum Autonome Systeme im Hightech-Forum: Autonome Systeme–Chancen und Risiken Für wirtschaft, Wissenschaft und Gesellschaft. Technical Report, Berlin 2017. Available online: https://www.acatech.de/publikation/fachforum-autonome-systeme-chancen-und-risiken-fuer-wirtschaft-wissenschaft-und-gesellschaft-abschlussbericht/ (accessed on 1 April 2024).
- Huang, H.E. Autonomy Levels for Unmanned Systems Framework, Volume I: Terminology; Version 2.0; NIST Special Publication 1011; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2008.
- Adler, R.; Reich, J.; Hawkins, R. Structuring Research Related to Dynamic Risk Management for Autonomous Systems. In Proceedings of the International Conference on Computer Safety, Reliability, and Security, 13 September 2023; Springer: Cham, Switzerland, 2023; pp. 362–368. [Google Scholar]
- Kleppmann, M. Designing Data-Intensive Applications: The Big Ideas behind Reliable, Scalable, and Maintainable Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017. [Google Scholar]
- Laney, D. 3D data management: Controlling data volume, velocity and variety. META Group Res. Note 2001, 6, 1. [Google Scholar]
- Das, B. An overview on big data: Characteristics, security and applications. J. Netw. Commun. Emerg. Technol. (JNCET) 2020, 10, 1–5. [Google Scholar]
- Singh, S.; Shehab, E.; Higgins, N.; Fowler, K.; Tomiyama, T.; Fowler, C. Challenges of Digital Twin in High Value Manufacturing; Technical Report, SAE Technical Paper. 2018. Available online: https://saemobilus.sae.org/papers/challenges-digital-twin-high-value-manufacturing-2018-01-1928 (accessed on 1 April 2024).
- Younan, M.; Houssein, E.H.; Elhoseny, M.; Ali, A.A. Challenges and recommended technologies for the industrial internet of things: A comprehensive review. Measurement 2020, 151, 107198. [Google Scholar] [CrossRef]
- Li, F.; Lam, K.Y.; Li, X.; Sheng, Z.; Hua, J.; Wang, L. Advances and emerging challenges in cognitive internet-of-things. IEEE Trans. Ind. Inform. 2019, 16, 5489–5496. [Google Scholar] [CrossRef]
- Damm, W.; Heidl, P. SafeTRANS Roadmap on Safety, Security, and Certifiability of Future Man-Machine Systems; SafeTRANS e.V.: Oldenburg, Germany, 2021. [Google Scholar]
- Diène, B.; Diallo, O.; Rodrigues, J.J.; Ndoye, E.H.M.; Teodorov, C. Data management mechanisms for IoT: Architecture, challenges and solutions. In Proceedings of the 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 23–26 September 2020; pp. 1–6. [Google Scholar]
- Uday, P.; Marais, K. Designing resilient systems-of-systems: A survey of metrics, methods, and challenges. Syst. Eng. 2015, 18, 491–510. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J. Human-cyber-physical systems: Concepts, challenges, and research opportunities. Front. Inf. Technol. Electron. Eng. 2020, 21, 1535–1553. [Google Scholar] [CrossRef]
- ISO/IEC/IEEE 15288:2023; Systems and Software Engineering–System Life Cycle Processes. Technical Report. International Organization for Standardization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/81702.html (accessed on 1 April 2024).
- Bauer, T.; Antonino, P.O.; Kuhn, T. Towards architecting digital twin-pervaded systems. In Proceedings of the 2019 IEEE/ACM 7th International Workshop on Software Engineering for Systems-of-Systems (SESoS) and 13th Workshop on Distributed Software Development, Software Ecosystems and Systems-of-Systems (WDES), Montreal, QC, Canada, 28 May 2019; pp. 66–69. [Google Scholar]
- Theobald, S.; Diebold, P. Interface problems of agile in a non-agile environment. In Agile Processes in Software Engineering and Extreme Programming: Proceedings of the 19th International Conference, XP 2018, Porto, Portugal, 21–25 May 2018; Proceedings 19; Springer: Cham, Switzerland, 2018; pp. 123–130. [Google Scholar]
- Tisi, M.; Bruneliere, H.; de Lara, J.; Di Ruscio, D.; Kolovos, D. Towards Twin-Driven Engineering: Overview of the State-of-the-Art and Research Directions. In Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems: Proceedings of the IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, 5–9 September 2021; Proceedings, Part I; Springer: Cham, Switzerland, 2021; pp. 351–359. [Google Scholar]
- McDermott, T.; DeLaurentis, D.; Beling, P.; Blackburn, M.; Bone, M. AI4SE and SE4AI: A research roadmap. Insight 2020, 23, 8–14. [Google Scholar] [CrossRef]
- Rushby, J. The Interpretation and Evaluation of Assurance Cases; Technical Report SRI-CSL-15-01; Computer Science Laboratory, SRI International: Menlo Park, CA, USA, 2015; Available online: https://www.csl.sri.com/~rushby/papers/sri-csl-15-1-assurance-cases.pdf (accessed on 1 April 2024).
- Alves, E.E.; Bhatt, D.; Hall, B.; Driscoll, K.; Murugesan, A.; Rushby, J. Considerations in Assuring Safety of Increasingly Autonomous Systems; Technical report NASA/CR–2018-220080; NASA, SRI International: Hampton, VA, USA, 2018. Available online: https://ntrs.nasa.gov/citations/20180006312 (accessed on 1 April 2024).
- Bishop, P.; Povyakalo, A.; Strigini, L. Bootstrapping confidence in future safety from past safe operation. In Proceedings of the 2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE), Charlotte, NC, USA, 31 October–3 November 2022; pp. 97–108. [Google Scholar]
- Rushby, J. Runtime certification. In Proceedings of the Runtime Verification: 8th International Workshop, RV 2008, Budapest, Hungary, 30 March 2008; Selected Papers 8; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2008; pp. 21–35. [Google Scholar]
- Schneider, D.; Trapp, M. B-space: Dynamic management and assurance of open systems of systems. J. Internet Serv. Appl. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Ebert, C.; Hochstein, L. DevOps in Practice. IEEE Softw. 2022, 40, 29–36. [Google Scholar] [CrossRef]
- Fitzgerald, B.; Stol, K.J. Continuous software engineering: A roadmap and agenda. J. Syst. Softw. 2017, 123, 176–189. [Google Scholar] [CrossRef]
- Randelhoff, M. Die drei Haupttheoreme der Stauforschung: Der Schmetterlingseffekt, Unsichtbare Wellen (=Phantomstau) und die Tragik des Zufalls. Zukunft Mobilität. 2011. Last updated: 22 December 2017. Available online: https://www.zukunft-mobilitaet.net/3344/analyse/wie-entstehen-staus-phantomstau/ (accessed on 1 April 2024).
- Leveson, N.G. Shortcomings of the Bow Tie and Other Safety Tools Based on Linear Causality; Technical Report; MIT: Cambridge, MA, USA, 2019; Available online: http://sunnyday.mit.edu/Bow-tie-final.pdf (accessed on 1 April 2024).
- Leveson, N.G. Engineering a Safer World: Systems Thinking Applied to Safety; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- Patel, A.R.; Haupt, N.B.; Adler, R.; Elberzhager, F.; Liggesmeyer, P. Exploring Safety Challenges in Dynamic Systems-of-Systems for Flood Management. In Proceedings of the 2023 18th Annual System of Systems Engineering Conference (SoSe), Lille, France, 14–16 June 2023; pp. 1–8. [Google Scholar]
- Dörner, D. Die Logik des Mißlingens: Strategisches Denken in Komplexen Situationen; Rowohlt Verlag GmbH: Hamburg, Germany, 2011. [Google Scholar]
- Jamshidi, P.; Pahl, C.; Mendonça, N.C.; Lewis, J.; Tilkov, S. Microservices: The journey so far and challenges ahead. IEEE Softw. 2018, 35, 24–35. [Google Scholar] [CrossRef]
- Woods, D. STELLA Report from the SNAFU Catchers Workshop on Coping with Complexity. SNAFU Catchers Consortium, Downloaded Stella. Report. 2017. Available online: https://snafucatchers.github.io/ (accessed on 1 April 2024).
- Glymour, C.; Zhang, K.; Spirtes, P. Review of causal discovery methods based on graphical models. Front. Genet. 2019, 10, 524. [Google Scholar] [CrossRef] [PubMed]
- Pearl, J.; Mackenzie, D. The Book of Why: The New Science of Cause and Effect; Basic Books: New York, NY, USA, 2018. [Google Scholar]
- Siebert, J. Applications of statistical causal inference in software engineering. Inf. Softw. Technol. 2023, 159, 107198. [Google Scholar] [CrossRef]
- Smite, D.; Moe, N.B.; Levinta, G.; Floryan, M. Spotify guilds: How to succeed with knowledge sharing in large-scale agile organizations. IEEE Softw. 2019, 36, 51–57. [Google Scholar] [CrossRef]
- Burton, R.M.; Håkonsson, D.D.; Nickerson, J.; Puranam, P.; Workiewicz, M.; Zenger, T. GitHub: Exploring the space between boss-less and hierarchical forms of organizing. J. Organ. Des. 2017, 6, 1–19. [Google Scholar] [CrossRef]
- Möller, U.; McCaffrey, M. Levels without bosses? Entrepreneurship and valve’s organizational design. In The Invisible Hand in Virtual Worlds: The Economic Order of Video Games; McCaffrey, M., Ed.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Barabási, A.L.; Pósfai, M. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Kuusisto, M. Organizational effects of digitalization: A literature review. Int. J. Organ. Theory Behav. 2017, 20, 341–362. [Google Scholar] [CrossRef]
- Jo, K.; Kim, J.; Kim, D.; Jang, C.; Sunwoo, M. Development of autonomous car—Part I: Distributed system architecture and development process. IEEE Trans. Ind. Electron. 2014, 61, 7131–7140. [Google Scholar] [CrossRef]
- Möstl, M.; Schlatow, J.; Ernst, R.; Dutt, N.; Nassar, A.; Rahmani, A.; Kurdahi, F.J.; Wild, T.; Sadighi, A.; Herkersdorf, A. Platform-centric self-awareness as a key enabler for controlling changes in CPS. Proc. IEEE 2018, 106, 1543–1567. [Google Scholar] [CrossRef]
- European Commission. Investing in Cloud, Edge and the Internet of Things. 2023. Available online: https://digital-strategy.ec.europa.eu/en/policies/iot-investing (accessed on 1 April 2024).
- Bleiholder, J.; Naumann, F. Data fusion. ACM Comput. Surv. (CSUR) 2009, 41, 1–41. [Google Scholar] [CrossRef]
- Gao, J.; Li, P.; Chen, Z.; Zhang, J. A survey on deep learning for multimodal data fusion. Neural Comput. 2020, 32, 829–864. [Google Scholar] [CrossRef] [PubMed]
- ISO 8000:2022; Data Quality. Technical Report. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/81745.html (accessed on 1 April 2024).
- ISO/IEC 25012:2008; Software Engineering–Software Product Quality Requirements and Evaluation (SQuaRE)–Data Quality Model. Technical Report. International Organization for Standardization: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/35736.html (accessed on 1 April 2024).
- ISO/IEC FDIS 5259; Artificial Intelligence–Data Quality for Analytics and Machine Learning (ML). Technical Report. International Organization for Standardization: Geneva, Switzerland, Under development. Available online: https://www.iso.org/standard/81088.html (accessed on 1 April 2024).
- Bolukbasi, T.; Chang, K.W.; Zou, J.Y.; Saligrama, V.; Kalai, A.T. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In Proceedings of the NIPS’16: 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016. [Google Scholar]
- Kläs, M.; Sembach, L. Uncertainty wrappers for data-driven models: Increase the transparency of AI/ML-based models through enrichment with dependable situation-aware uncertainty estimates. In Proceedings of the Computer Safety, Reliability, and Security: SAFECOMP 2019 Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Turku, Finland, 10 September 2019; Proceedings 38. Springer: Berlin/Heidelberg, Germany, 2019; pp. 358–364. [Google Scholar]
- Groß, J.; Adler, R.; Kläs, M.; Reich, J.; Jöckel, L.; Gansch, R. Architectural patterns for handling runtime uncertainty of data-driven models in safety-critical perception. In Proceedings of the International Conference on Computer Safety, Reliability, and Security, Munich, Germany, 6–9 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 284–297. [Google Scholar]
- Wahlster, W.; Winterhalter, C. (Eds.) German Standardization Roadmap on Artificial Intelligence; DIN e.V., DKE: Berlin/Frankfurt am Main, Germany, 2020. [Google Scholar]
- Kim, M.S. Research issues and challenges related to Geo-IoT platform. Spat. Inf. Res. 2018, 26, 113–126. [Google Scholar] [CrossRef]
- Ahlawat, P.; Rana, C. An Era of Recommendation Technologies in IoT: Categorisation by techniques, Challenges and Future Scope. Pertanika J. Sci. Technol. 2021, 29. [Google Scholar] [CrossRef]
- Falcão, R.; Villela, K.; Vieira, V.; Trapp, M.; de Faria, I.L. The practical role of context modeling in the elicitation of context-aware functionalities: A survey. In Proceedings of the 2021 IEEE 29th International Requirements Engineering Conference (RE), Notre Dame, IN, USA, 20–24 September 2021; pp. 35–45. [Google Scholar]
- Feth, P. Dynamic Behavior Risk Assessment for Autonomous Systems; Fraunhofer Verlag: Stuttgart, Germany, 2020. [Google Scholar]
- Geisslinger, M.; Poszler, F.; Betz, J.; Lütge, C.; Lienkamp, M. Autonomous driving ethics: From trolley problem to ethics of risk. Philos. Technol. 2021, 34, 1033–1055. [Google Scholar] [CrossRef]
- Adler, R.; Elberzhager, F.; Falcão, R.; Siebert, J.; Groen, E.C.; Heinrich, J.; Balduf, F.; Liggesmeyer, P. A Research Roadmap for Trustworthy Dynamic Systems of Systems-Motivation, Challenges and Research Directions. Technical Report IESE-001.23/E, Fraunhofer Institute for Experimental Software Engineering (IESE). 2023. Available online: https://www.iese.fraunhofer.de/content/dam/iese/publication/dynasos-research-roadmap-fraunhofer-iese.pdf (accessed on 1 April 2024).
- Adler, R.; Elberzhager, F.; Baldauf, F. Engineering a sustainable world by enhancing the scope of systems of systems engineering and mastering dynamics. arXiv 2024, arXiv:2401.14047. [Google Scholar]
- Henshaw, M.; Siemieniuch, C.; Sinclair, M.; Henson, S.; Barot, V.; Jamshidi, M.; DeLaurentis, D.; Ncube, C.; Lim, S.L.; Dogan, H. Systems of Systems Engineering: A research imperative. In Proceedings of the 2013 IEEE International Conference on System Science and Engineering (ICSSE), Budapest, Hungary, 4–6 July 2013; Szakál, A., Ed.; IEEE: Piscataway, NJ, USA, 2013; pp. 389–394. [Google Scholar] [CrossRef]
- Henshaw, M. The Systems of Systems Engineering Strategic Research Agenda: Created by the Trans-Atlantic Research and Education Agenda in Systems of Systems (T-AREA-SoS) Project. Grant Number: 287593; Technical Report; Loughborough University: Loughborough, UK; Available online: https://www.researchgate.net/profile/Michael-Henshaw-3/publication/316688269_The_Systems_of_Systems_Engineering_Strategic_Research_Agenda/links/590da9beaca2722d185e8c4e/The-Systems-of-Systems-Engineering-Strategic-Research-Agenda.pdf (accessed on 1 April 2024).
- Dogan, H.; Ncube, C.; Lim, S.L.; Henshaw, M.; Siemieniuch, C.; Sinclair, M.; Barot, V.; Henson, S.; Jamshidi, M.; Delaurentis, D. Economic and societal significance of the systems of systems research agenda. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013, Manchester, UK, 13–16 October 2013. [Google Scholar] [CrossRef]
- Ncube, C.; Lim, S.L.; Amyot, D.; Maalej, W.; Ruhe, G. On systems of systems engineering: A requirements engineering perspective and research agenda. In Proceedings of the 2018 IEEE 26th International Requirements Engineering Conference, RE 2018, Banff, AB, Canada, 20–24 August 2018. [Google Scholar] [CrossRef]
- INCOSE. Systems Engineering Vision 2035; Technical Report; INCOSE: San Diego, CA, USA, 2022; Available online: https://www.incose.org/docs/default-source/se-vision/incose-se-vision-2035.pdf (accessed on 1 April 2024).
- Advanced Systems Engineering. Available online: https://www.advanced-systems-engineering.de/ (accessed on 1 April 2024).
- Axelband, E.; Baehren, T.; Dorenbos, D.; Madni, A.; Robitaille, P.; Valerdi, R.; Boehm, B.; Jackson, S.; Nadler, G.; Settles, S. A research agenda for systems of systems architecting. In Proceedings of the 17th Annual International Symposium of the International Council on Systems Engineering, INCOSE 2007—Key to Intelligent Enterprises, San Diego, CA, USA, 24–28 June 2007. [Google Scholar]
- Dridi, C.E.; Benzadri, Z.; Belala, F. System of Systems Modelling: Recent work Review and a Path Forward. In Proceedings of the 2020 International Conference on Advanced Aspects of Software Engineering (ICAASE), Constantine, Algeria, 28–30 November 2020. [Google Scholar] [CrossRef]
- Guessi, M.; Neto, V.; Bianchi, T.; Felizardo, K.R.; Oquendo, F.; Nakagawa, E.Y.; Shin, D. A systematic literature review on the description of software architectures for systems of systems. In Proceedings of the ACM Symposium on Applied Computing, Salamanca, Spain, 13–17 April 2015. [Google Scholar] [CrossRef]
- Klein, J.; van Vliet, H. A systematic review of system-of-systems architecture research. In Proceedings of the QoSA 2013: 9th International ACM Sigsoft Conference on the Quality of Software Architectures, Columbia, Canada, 17–21 June 2013. [Google Scholar] [CrossRef]
- Mohsin, A.; Janjua, N.K. A review and future directions of SOA-based software architecture modeling approaches for System of Systems. Serv. Oriented Comput. Appl. 2018, 12, 183–200. [Google Scholar] [CrossRef]
- Mohsin, A.; Janjua, N.K.; Islam, S.; Graciano Neto, V.V. Modeling approaches for system-of-systems dynamic architecture: Overview, taxonomy and future prospects. In Proceedings of the 2019 14th Annual Conference System of Systems Engineering (SoSE), Anchorage, AK, USA, 19–22 May 2019. [Google Scholar] [CrossRef]
- Santos, D.S.; Oliveira, B.R.N.; Kazman, R.; Nakagawa, E.Y. Evaluation of Systems-of-Systems Software Architectures: State of the Art and Future Perspectives. ACM Comput. Surv. 2022, 55, 67. [Google Scholar] [CrossRef]
- Tolk, A.; Rainey, L.B. Toward a Research Agenda for M&S Support of System of Systems Engineering. In Modeling and Simulation Support for System of Systems Engineering Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Northrop, L.; Feiler, P.; Gabriel, R.P.; Goodenough, J.; Linger, R.; Longstaff, T.; Kazman, R.; Klein, M.; Schmidt, D.; Sullivan, K. Ultra-Large-Scale Systems: The Software Challenge of the Future; Technical Report; Carnegie Mellon University, Software Engineering Institute (SEI): Pittsburgh, PA, USA, 2006; Available online: https://apps.dtic.mil/sti/tr/pdf/ADA610356.pdf (accessed on 1 April 2024).
- Electronic Components and Systems. Strategic Research and Innovation Agenda 2023. Technical Report. Available online: https://ecssria.eu/ECS-SRIA%202023.pdf (accessed on 1 April 2024).
- Castellani, B.; Gerrits, L. Map of the Complexity Sciences; Art and Science Factory, LLC. 2021. Available online: https://www.art-sciencefactory.com/complexity-map_feb09.html (accessed on 1 April 2024).
Organization (N = 83) | Role (N = 103) | |||||||
---|---|---|---|---|---|---|---|---|
Type | Detail | % | Manager |
Project/
Team Leader | Employee | Director | Professor | Other |
Industry | Companies | 43.4% | 13 | 11 | 13 | 5 | 0 | 4 |
Startups | 3.6% | |||||||
Infrastructure | 2.4% | |||||||
Research | Institutes | 21.7% | 10 | 12 | 4 | 12 | 8 | 0 |
Universities | 16.9% | |||||||
Public administration | Public authorities and government | 6.0% | 6 | 0 | 0 | 0 | 0 | 0 |
Associations | Associations, unions | 6.0% | 1 | 3 | 0 | 1 | 0 | 0 |
Aspect | Terms |
---|---|
Systems of Systems | TITLE (“systems of systems” OR “multi agent” OR “agent oriented” OR “agent based” OR “IoT” OR “internet of things” OR “Cyber Physical Systems” OR “CPS” OR “complex adaptive systems” OR “adaptive systems” OR “complex systems” OR “digital twin”) |
Challenges | TITLE ({research agenda} OR “opportunities” OR “roadmap” OR {research roadmap} OR “issues” OR “challenges” OR “vision” OR “trends”) |
Dynamism | TITLE-ABS-KEY(dynamic) |
Last 10 years | PUBYEAR >2012 |
Type | % (N = 17) | Manager | Project/Team Leader | Employee | Director | Professor | Other |
---|---|---|---|---|---|---|---|
Industry | 41.2% | 1 | 2 | 3 | 1 | 0 | 0 |
Research | 47.0% | 1 | 0 | 3 | 0 | 4 | 0 |
Public adm. | 11.8% | 0 | 1 | 1 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adler, R.; Elberzhager, F.; Falcão, R.; Siebert, J. Defining and Researching “Dynamic Systems of Systems”. Software 2024, 3, 183-205. https://doi.org/10.3390/software3020009
Adler R, Elberzhager F, Falcão R, Siebert J. Defining and Researching “Dynamic Systems of Systems”. Software. 2024; 3(2):183-205. https://doi.org/10.3390/software3020009
Chicago/Turabian StyleAdler, Rasmus, Frank Elberzhager, Rodrigo Falcão, and Julien Siebert. 2024. "Defining and Researching “Dynamic Systems of Systems”" Software 3, no. 2: 183-205. https://doi.org/10.3390/software3020009
APA StyleAdler, R., Elberzhager, F., Falcão, R., & Siebert, J. (2024). Defining and Researching “Dynamic Systems of Systems”. Software, 3(2), 183-205. https://doi.org/10.3390/software3020009